双相高强钢FeNiAlC的动态剪切行为及微结构机理

马彦 袁福平 武晓雷

马彦, 袁福平, 武晓雷. 双相高强钢FeNiAlC的动态剪切行为及微结构机理[J]. 爆炸与冲击, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224
引用本文: 马彦, 袁福平, 武晓雷. 双相高强钢FeNiAlC的动态剪切行为及微结构机理[J]. 爆炸与冲击, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224
MA Yan, YUAN Fuping, WU Xiaolei. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy[J]. Explosion And Shock Waves, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224
Citation: MA Yan, YUAN Fuping, WU Xiaolei. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy[J]. Explosion And Shock Waves, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224

双相高强钢FeNiAlC的动态剪切行为及微结构机理

doi: 10.11883/bzycj-2020-0224
基金项目: 国家自然科学基金(11672313,11790293)
详细信息
    作者简介:

    马 彦(1992- ),男,博士研究生,mayan@imech.ac.cn

  • 中图分类号: O347.3

Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy

  • 摘要: 绝热剪切带是金属材料在高应变率载荷下常见的一种失效模式。利用霍普金森压杆装置,对双相钢Fe-24.86Ni-5.8Al-0.38C不同微结构的帽形样品施加冲击载荷,研究它的动态剪切变形行为及微结构机理。先通过对固熔处理得到的粗晶态样品进行大应变冷轧获得冷轧态样品,再使用透射电子显微镜和扫描电子显微镜表征两种样品冲击前后微结构的变化差异。结果表明,双相钢FeNiAlC拥有较优异的动态剪切性能,剪切强度达1.3 GPa,均匀剪切应变达1.5。变形前,材料由奥氏体相和马氏体相构成,马氏体体积分数约为20%。变形过程由位错滑移和孪生变形主导,但因应变速率较高致使马氏体相变被抑制。不同微结构样品内均形成绝热剪切带,带内发生动态再结晶,形成超细晶粒,平均晶粒尺寸约300 nm,且剪切带内不发生相变;冷轧态剪切带宽度的实验值(14.6 μm)与理论计算值(12.3 μm)较好吻合,而粗晶态剪切带宽度的实验值(14.6 μm)与理论计算值(30 μm)相差甚远,初步分析可能是因为粗晶态样品应变较大基本不满足完全绝热的理论条件。在变形过程中,粗晶态因塑性变形做功产生的绝热温升高达720 K,而冷轧态的只有190 K。通过实验结果与热塑模型分析,得出绝热温升不是形成绝热剪切带的唯一因素,而应考虑材料的微观结构和局部化变形等的共同影响。
  • 图  1  动态剪切实验装置和样品

    Figure  1.  Dynamic shear experimental device and its sample

    图  2  实验前CG样品的微观结构

    Figure  2.  Microstructures of CG sample before experiment

    图  3  实验前CR53样品的微观结构

    Figure  3.  Microstructures of CR53 sample before experiment

    图  4  实验前CG和CR53样品的TEM

    Figure  4.  TEM observations of CG and CR53 sample before experiment

    图  5  不同微结构的动态剪切性能

    Figure  5.  Dynamic shear properties of various microstructures

    图  6  不同金属的动态剪切性能

    Figure  6.  Dynamic shear properties of various metals

    图  7  实验后CG样品的微观结构

    Figure  7.  Microstructures of CG sample after experiment

    图  8  实验后CR53样品的微观结构

    Figure  8.  Microstructures of CR53 sample after experiment

    图  9  实验前CG和CR53样品的KAM及分布

    Figure  9.  KAM values and distributions of CG and CR53 sample before experiment

    图  10  实验后CG和CR53样品的KAM及分布

    Figure  10.  KAM values and distributions of CG and CR53 sample after experiment

    图  11  最大应力点前剪切区塑性功引起的温度升高

    Figure  11.  Temperature rise due to plastic dissipation work in shear zone before maximum stress point

    图  12  绝热剪切带内微观结构

    Figure  12.  Microstructures within ASBs

    图  13  绝热剪切带宽度分布

    Figure  13.  ASBs width distributions

  • [1] DODD B, BAI Y L. Adiabatic shear localization [M]. 2nd ed. London: Elsevier, 2012: 4−5.
    [2] 杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. DOI: 1004-0609(2002)03-0401-08.

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. DOI: 1004-0609(2002)03-0401-08.
    [3] WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. DOI: 10.1007/s11661-007-9271-x.
    [4] MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. DOI: 10.1016/s1359-6454(02)00526-8.
    [5] YANG Y, LIAN X L, WANG J L. Effect of the grain boundary character distribution on the self-organization of adiabatic shear bands in 1Cr18Ni9Ti austenitic stainless steel [J]. Journal of Materials Science, 2019, 54(9): 7256–7270. DOI: 10.1007/s10853-019-03377-z.
    [6] LI N, WANG Y D, PENG R L, et al. Localized amorphism after high-strain-rate deformation in TWIP steel [J]. Acta Materialia, 2011, 59(16): 6369–6377. DOI: 10.1016/j.actamat.2011.06.048.
    [7] WEI Q, KECSKES L, JIAO T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Materialia, 2004, 52(7): 1859–1869. DOI: 10.1016/j.actamat.2003.12.025.
    [8] WEI Q, SCHUSTER B E, MATHAUDHU S N, et al. Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures [J]. Materials Science and Engineering: A, 2008, 493(1/2): 58–64. DOI: 10.1016/j.msea.2007.05.126.
    [9] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
    [10] BATRA R C, KIM C H. Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials [J]. International Journal of Plasticity, 1990, 6(2): 127–141. DOI: 10.1016/0749-6419(90)90018-a.
    [11] BIAN X D, YUAN F P, ZHU Y T, et al. Gradient structure produces superior dynamic shear properties [J]. Materials Research Letters, 2017, 5(7): 501–507. DOI: 10.1080/21663831.2017.1334715.
    [12] HE J Y, YUAN F P, YANG M X, et al. Superior mechanical properties and deformation mechanisms of heterogeneous laminates under dynamic shear loading [J]. Materials Science and Engineering: A, 2019, 756: 492–501. DOI: 10.1016/j.msea.2019.04.082.
    [13] XUE Q, GRAY III G T, HENRIE B L, et al. Influence of shock prestraining on the formation of shear localization in 304 stainless steel [J]. Metallurgical and Materials Transactions A, 2005, 36(6): 1471–1486. DOI: 10.1007/s11661-005-0239-4.
    [14] YUAN F P, BIAN X D, JIANG P, et al. Dynamic shear response and evolution mechanisms of adiabatic shear band in an ultrafine-grained austenite-ferrite duplex steel [J]. Mechanics of Materials, 2015, 89: 47–58. DOI: 10.1016/j.mechmat.2015.06.004.
    [15] MA Y, YANG M X, JIANG P, et al. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties [J]. Scientific Reports, 2017, 7(1): 15619. DOI: 10.1038/s41598-017-15905-5.
    [16] WU X L, YANG M X, YUAN F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501–14505. DOI: 10.1073/pnas.1517193112.
    [17] VERCAMMEN S, BLANPAIN B, DE COOMAN B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning [J]. Acta Materialia, 2004, 52(7): 2005–2012. DOI: 10.1016/j.actamat.2003.12.040.
    [18] XING J X, YUAN F P, WU X L. Enhanced quasi-static and dynamic shear properties by heterogeneous gradient and lamella structures in 301 stainless steels [J]. Materials Science and Engineering A, 2017, 680: 305–316. DOI: 10.1016/j.msea.2016.10.111.
    [19] XUE Q, GRAY III G T. Development of adiabatic shear bands in annealed 316l stainless steel: Part Ⅰ. correlation between evolving microstructure and mechanical behavior [J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2435–2446. DOI: 10.1007/bf02586217.
    [20] PUSHKOV V, YURLOV A, BOL’SHAKOV A, et al. Study of adiabatic localized shear in metals by split Hopkinson pressure bar method [C] ∥ Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter. Paris: EPJ, 2010, 10: 00029.DOI: 10.1051/epjconf/20101000029.
    [21] PUSHKOV V A, YURLOV A V, PODURETS A M, et al. Effect of preloading on the formation of adiabatic localized shear in copper [J]. Combustion, Explosion, and Shock Waves, 2013, 49(5): 620–624. DOI: 10.1134/s0010508213050146.
    [22] HOFMANN U, EL-MAGD E. Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes [J]. Materials Science and Engineering: A, 2005, 395(1/2): 129–140. DOI: 10.1016/j.msea.2004.12.030.
    [23] GU Y B, NESTERENKO V F. Dynamic behavior of HIPed Ti-6Al-4V [J]. International Journal of Impact Engineering, 2007, 34(4): 771–783. DOI: 10.1016/j.ijimpeng.2006.01.006.
    [24] YANG Y, JIANG F, ZHOU B M, et al. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy [J]. Materials Science and Engineering: A, 2011, 528(6): 2787–2794. DOI: 10.1016/j.msea.2010.12.053.
    [25] MA Y, YUAN F P, YANG M X, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Materialia, 2018, 148: 407–418. DOI: 10.1016/j.actamat.2018.02.016.
    [26] HE J Y, MA Y, YAN D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates [J]. Materials Science and Engineering: A, 2018, 726: 288–297. DOI: 10.1016/j.msea.2018.04.102.
    [27] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122: 015503. DOI: 10.1103/PhysRevLett.122.015503.
    [28] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
    [29] SUO T, LI Y L, ZHAO F, et al. Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges [J]. Mechanics of Materials, 2013, 61: 1–10. DOI: 10.1016/j.mechmat.2013.02.003.
    [30] WEI Q M. Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses [J]. Journal of Materials Science, 2007, 42(5): 1709–1727. DOI: 10.1007/s10853-006-0700-9.
    [31] TALONEN J, HÄNNINEN H, NENONEN P, et al. Effect of strain rate on the strain-induced γα'-martensite transformation and mechanical properties of austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2005, 36(2): 421–432. DOI: 10.1007/s11661-005-0313-y.
  • 加载中
图(13)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  429
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-09-09
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回