Debris cloud characteristics of graded-impedance shields under hypervelocity impact
-
摘要: 碎片云特性是影响空间碎片防护结构防护性能的重要因素。通过实验对比了相同面密度波阻抗梯度材料、铝合金材料的碎片云特性,并借助数值模拟进行了更深入的研究,结果表明,当弹丸分别撞击波阻抗梯度材料、铝合金材料时,碎片云结构中弹丸的破碎特征明显不同。撞击波阻抗梯度材料时,弹丸头部破碎更加充分,弹丸侧向扩展程度提高;在高速段(6.5 km/s),受阻抗梯度及材料熔化效应的共同作用,波阻抗梯度材料碎片云头部出现分层现象。研究结果表明,超高速撞击波阻抗梯度材料碎片云特性的变化是其防护性能优于相同面密度铝合金的重要因素之一。Abstract: Graded-impedance shield is a kind of structure against space debris with excellent protection performance verified by experiments. Graded wave impedance material is used as its core buffer. In order to further optimize the design of graded wave impedance material and promote the engineering application of graded-impedance shield, it is necessary to deeply understand the protection mechanism of the shield against hypervelocity impact. The difference of debris cloud characteristics is an important factor affecting the protection performance of shields against space debris. Further study on the debris cloud characteristics of graded-impedance shield and comparison with aluminum alloy Whipple shield with the same areal density can deepen the understanding of the protection mechanism of graded-impedance shield against hypervelocity impact. In this paper, the hypervelocity impact experiments were carried out at 3.5, 5.0 and 6.5 km/s for the graded-impedance shield and aluminum alloy Whipple shield with the same areal density. The characteristics of the debris cloud formed by the projectile impacting the graded wave impedance material and aluminum alloy material with the same areal density were compared after the experiment, and the characteristics of debris cloud fragmentation was quantitatively analyzed and compared through numerical simulation, including the characteristics of cloud mass, quantity and temperature distribution. As results, it is shown that the fragmentation characteristics of projectile fragments in debris cloud structure are obviously different when the projectile impacts the graded wave impedance material and aluminum alloy material, respectively. When the impact wave impedance gradient material is used, the projectile head is broken more fully, and the projectile lateral expansion degree is increased. In the high-speed section (6.5 km/s), due to the joint action of impedance gradient and material melting effect for the graded wave impedance material, the delamination phenomenon appears in the head of debris cloud. The results show that the change of debris cloud characteristics under hypervelocity impact is one of the key factors that the protective performance of graded wave impedance material is better than that of the aluminum alloy with the same areal density.
-
表 1 波阻抗梯度材料结构参数
Table 1. Structural parameters of graded-impedance material
等效厚度 编号 材料组成 各层厚度/mm 总厚度/mm 1.5 mm铝合金 TAM Ti6Al4V 0.3 1.8 Al2024-T4 0.2 AZ31B 1.3 表 2 超高速撞击实验参数与结果
Table 2. Experimental parameters and results of hypervelocity impact
实验编号 缓冲屏材料 撞击速度/(km·s−1) 弹丸直径/mm 后墙损伤情况 后墙失效与否 shot 1-1 TAM 3.440 4.25 鼓包 未失效 shot 1-2 TAM 3.473 4.51 鼓包、穿孔、剥落 失效 shot 1-3 Al 3.596 3.50 鼓包 未失效 shot 1-4 Al 3.480 4.00 鼓包、临界穿孔、剥落、层裂 失效 shot 2-1 TAM 4.951 4.99 鼓包 未失效 shot 2-2 TAM 4.819 5.24 鼓包 未失效 shot 2-3 TAM 4.827 5.25 鼓包、穿孔 失效 shot 3-1 TAM 6.400 6.00 鼓包 未失效 shot 3-2 TAM 6.412 6.27 鼓包、剥落 失效 shot 3-3 Al 6.518 4.50 鼓包 未失效 shot 3-4 Al 6.442 5.00 穿孔、剥落、鼓包 失效 表 3 材料的Tillotson状态方程参数
Table 3. Parameters of Tillotson state equations for titanium and aluminum
材料 A/GPa B/GPa a b $ \alpha $ $\ \beta$ e0/(MJ·kg−1) e1/(MJ·kg−1) e2/(MJ·kg−1) TI6%AL4%V钛 103 50 0.5 0.6 5 5 7.0 3.5 12.5 AL2024-T4铝 75 65 0.5 1.63 5 5 5.0 3.0 15.0 表 4 材料的Steinberg Guinan本构模型参数
Table 4. Parameters of Steinberg Guinan models for titanium and aluminum
材料 $ {Y}_{0} $/GPa Ymax/GPa b h $\ \beta$ $ {G}_{0} $/GPa ${T}_{\rm m}$/K TI6%AL4%V钛 1.33 2.12 0.48 0.1 12 41.9 2110 AL2024-T4铝 0.29 0.68 1.86 0.185 310.0 27.6 1220 表 5 AZ31B镁Puff状态方程参数
Table 5. Parameters of Puff state equation for AZ31B magnesium
材料 A1/GPa A2/GPa A3/GPa Grüneisen系数 膨胀系数 升华能/(MJ·kg−1) AZ31B镁 103 50 0.5 0.6 5 7.0 -
[1] CHRISTIANSEN E L. Handbook for designing MMOD protection: NASA JSC-64399 [R]. 2009. [2] WILLIAMSEN J E, ROBINSON J H, NOLEN A M. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1): 217–228. DOI: 10.1016/0734-743X(95)99848-L. [3] DESTEFANIS R, SCHAEFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33(1): 219–230. DOI: 10.1016/j.ijimpeng.2006.09.065. [4] COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y. [5] CHRISTIANSEN E L. Meteoroid/Debris shielding: TP-2003-210788 [R]. 2003. [6] MAIDEN C J, MCMILLAN A R. An investigation of the protection afforded a spacecraft by a thin shield [J]. AIAA Journal, 1964, 2(11): 1992–1998. DOI: 10.2514/3.2705. [7] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000. [8] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1): 573–546. DOI: 10.1016/0734-743X(93)90053-A. [9] PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. 1996. [10] SWIFT H F, PREONAS D D, TURPIA W C, et al. Debris clouds behind plates impacted by hypervelocity pellets [J]. Journal of Spacecraft and Rockets, 1970, 7: 313–318. DOI: 10.2514/3.29926. [11] 唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟 [J]. 强激光与粒子束, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203.TANG M, LIU C L, LI P, et al. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact [J]. High Power Laser and Particle Beams, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203. [12] SWIFT H F, BAMFORD R, CHEN R. Designing space vehicle shields for meteoroid protection: a new analysis [J]. Advanced in Space Research, 1982, 2(12): 219–234. DOI: 10.1016/0273-1177(82)90311-8. [13] MERZHIEVSKY L A. Statistical characteristics of a debris cloud behind a shield [J]. International Journal of Impact Engineering, 1997, 20(6): 569–577. DOI: 10.1016/S0734-743X(97)87445-3. [14] PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B. [15] BLESS S. Bumper debris cloud structure estimated by shock calculation [J]. Journal de Physique Ⅳ Colloque, 1991, 1: 903–908. DOI: 10.1051/jp4:19913127. [16] HUANG J, MA Z X, REN L S, et al. A new engineering model of debris cloud produced by hypervelocity impact [J]. International Journal of Impact Engineering, 2013, 56: 32–39. DOI: 10.1016/j.ijimpeng.2012.07.003. [17] 侯明强, 龚自正, 杨继运, 等. 一种新概念密度梯度型高性能空间碎片防护结构 [C]// 2009年空间环境与材料科学论坛. 北京, 2009. [18] HOU M Q, GONG Z Z, ZHENG J D, et al. A new concept shield resisting hypervelocity impact [C]// The 29th Inter-Agency Space Debris Coordination Committee Meeting. Berlin, Germany, 2011. [19] 侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701.HOU M Q, GONG Z Z, XU K B, et al. Experimental study on hypervelocity impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701. [20] 侯明强, 龚自正, 徐坤博, 等. 密度梯度型防护结构碎片云参数理论分析 [C]// 第十一届全国冲击动力学学术会议. 陕西咸阳, 2013. [21] 郑建东, 龚自正, 席爽, 等. 基于弹丸最大碎片理论的碎片云模型 [J]. 航天器环境工程, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.ZHENG J D, GONG Z Z, XI S, et al. A new debris cloud model based on the largest fragment theory [J]. Spacecraft Environment Engineering, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.