岩石动态巴西圆盘实验中的过载现象

夏开文 余裕超 王帅 吴帮标 徐颖 蔡英鹏

夏开文, 余裕超, 王帅, 吴帮标, 徐颖, 蔡英鹏. 岩石动态巴西圆盘实验中的过载现象[J]. 爆炸与冲击, 2021, 41(4): 041403. doi: 10.11883/bzycj-2020-0369
引用本文: 夏开文, 余裕超, 王帅, 吴帮标, 徐颖, 蔡英鹏. 岩石动态巴西圆盘实验中的过载现象[J]. 爆炸与冲击, 2021, 41(4): 041403. doi: 10.11883/bzycj-2020-0369
XIA Kaiwen, YU Yuchao, WANG Shuai, WU Bangbiao, XU Ying, CAI Yingpeng. On the overload phenomenon in dynamic Brazilian disk experiments of rocks[J]. Explosion And Shock Waves, 2021, 41(4): 041403. doi: 10.11883/bzycj-2020-0369
Citation: XIA Kaiwen, YU Yuchao, WANG Shuai, WU Bangbiao, XU Ying, CAI Yingpeng. On the overload phenomenon in dynamic Brazilian disk experiments of rocks[J]. Explosion And Shock Waves, 2021, 41(4): 041403. doi: 10.11883/bzycj-2020-0369

岩石动态巴西圆盘实验中的过载现象

doi: 10.11883/bzycj-2020-0369
基金项目: 国家自然科学基金面上项目(51879184,52079091)
详细信息
    作者简介:

    夏开文(1973- ),男,博士,教授,kaiwen@tju.edu.cn

    通讯作者:

    吴帮标(1987- ),男,博士,副教授,bbwu@tju.edu.cn

  • 中图分类号: O346.4; TU45

On the overload phenomenon in dynamic Brazilian disk experiments of rocks

  • 摘要: 巴西圆盘实验是国际岩石力学与工程学会(ISRM)推荐的测量岩石静态拉伸强度的方法之一,也是该学会推荐的唯一测量岩石动态拉伸强度的方法。但是巴西圆盘实验得到的静态或者动态拉伸强度往往较真实值偏大,其中一个原因是所谓的过载现象,而且其相应的过载效应在动态巴西圆盘测试中尤为明显。为探究岩石材料动态劈裂拉伸强度的过载效应机理及其率相关性,利用SHPB实验装置开展了不同加载率条件下的动态巴西圆盘实验,对岩石材料劈裂拉伸强度的过载特性进行了定量分析;结合颗粒流程序进行了相关实验的数值模拟,得到了圆盘破裂的微观过程。结果表明:(1)动态巴西圆盘实验得到的岩石拉伸强度存在明显的过载现象,圆盘试样拉伸强度的过载比随加载率增加呈对数形式增加;(2)依据动态拉伸强度实验结果对模型参数引入率相关性后,模拟观察到的过载效应更加贴近实验观测。这些结果表明巴西圆盘实验中拉伸强度的过载现象是客观存在的,其机理与试样的圆盘构型以及测试方法有关。结合实验和数值结果,解释了巴西圆盘实验的过载机理,证明了动态巴西圆盘实验修正的必要性并给出了相应的方案,以获取岩石材料的真实动态拉伸强度。
  • 图  1  $\varnothing $50 mm分离式霍普金森压杆试验系统

    Figure  1.  $\varnothing $50 mm split Hopkinson pressure bar system

    图  2  典型动态巴西圆盘实验动态应力平衡验证

    Figure  2.  Verification of dynamic stress balance in typical Dynamic BD test

    图  3  试样起裂监测应变片粘贴位置

    Figure  3.  Schematics of a strain gauge cemented on the specimen for detecting failure onset

    图  4  180 GPa/s加载率工况圆盘应力过载修正

    Figure  4.  The overload correction for specimen’s tensile stress under 180 GPa/s loading rate

    图  5  418 GPa/s加载率工况圆盘应力过载修正

    Figure  5.  The overload correction for specimen’s tensile stress under 418 GPa/s loading rate

    图  6  名义拉伸强度与真实拉伸强度

    Figure  6.  Nominal tensile strength and the real tensile strength

    图  7  动态巴西圆盘实验过载比

    Figure  7.  The overload ratio for dynamic BD tests

    图  8  $ \varnothing $50 mm的SHPB数值实验系统

    Figure  8.  $ \varnothing $50 mm split Hopkinson pressure bar numerical system

    图  9  实验与模拟入射波波形对照

    Figure  9.  Incident wave comparison between lab experiment and numerical simulation

    图  10  实验与模拟名义拉伸强度的率效应

    Figure  10.  The rate dependency for experimental and numerical nominal tensile stress

    图  11  不同加载率下实验与模拟圆盘的拉伸应力

    Figure  11.  Experimental and numerical tensile stress under different loading rates

    图  12  典型数值模拟动态应力平衡验证

    Figure  12.  Verification of dynamic stress balance in typical numerical dynamic BD test

    图  13  实验与模拟名义拉伸强度

    Figure  13.  Experimental and numerical nominal tensile strength

    图  14  375 GPa/s加载率实验与模拟破坏模式

    Figure  14.  Experimental and numerical disk failure pattern under 375 GPa/s loading rate

    图  15  1021 GPa/s加载率实验与模拟破坏模式

    Figure  15.  Experimental and numerical disk failure pattern under 1021 GPa/s loading rate

    图  16  345.3 GPa/s加载率工况模拟结果过载修正

    Figure  16.  The overload correction for numerical tensile stress under 345.3 GPa/s loading rate

    图  17  实验与数值模拟动态巴西劈裂实验过载比

    Figure  17.  Experimental and numerical overload ratio for dynamic BD tests

    图  18  609.6 GPa/s加载工况数值模拟中的过载现象以及圆盘破坏过程

    Figure  18.  The overload phenomenon and the failure process of numerical specimen under 609.6 GPa/s loading rate

    表  1  动态巴西圆盘实验结果

    Table  1.   Dynamic BD experimental results

    加载率/(GPa·s−1名义拉伸强度/MPa真实拉伸强度/MPa过载时间/μs过载比
    179.920.3619.49 4.720.045
    209.521.8419.3310.960.130
    304.822.2018.2816.50 0.213
    345.321.2017.7015.280.198
    375.021.9019.3010.640.135
    418.425.3020.5613.760.231
    609.630.8023.7012.720.300
    693.830.0021.7013.280.383
    790.030.0222.2010.080.352
    1 021.237.3025.9216.80 0.439
    下载: 导出CSV

    表  2  试样主要模型微观参数

    Table  2.   Parameters of the numerical specimen

    密度/
    (kg·m−3
    颗粒刚
    度比
    黏结刚
    度比
    颗粒变形
    模量/GPa
    黏结变形
    模量/GPa
    拉伸黏结
    强度/MPa
    内聚力/
    MPa
    摩擦角/
    (°)
    2 8001.4031.40319.7019.70232345
    下载: 导出CSV

    表  3  杆件主要模型微观参数

    Table  3.   Parameters of the numerical bar

    密度/
    (kg·m−3
    颗粒刚
    度比
    黏结刚
    度比
    颗粒变形
    模量/GPa
    黏结变形
    模量/GPa
    拉伸黏结
    强度/MPa
    剪切黏结
    强度/MPa
    7 800112002001010010100
    下载: 导出CSV

    表  4  模型宏观参数与材料宏观参数对比

    Table  4.   Macroscopic parameters of the numerical model and real rock

    模型/材料泊松比弹性模量/GPa名义拉伸强度/MPa
    数值模型0.1941.4511.24
    真实材料0.124~0.21838.774~46.5939.788~12.268
    下载: 导出CSV
  • [1] 章奇锋, 周春宏, 周辉, 等. 锦屏Ⅱ水电站辅助洞岩爆灾害评价及对策研究 [J]. 岩土力学, 2009, 30(S2): 422–426, 445. DOI: 10.16285/j.rsm.2009.s2.045.

    ZHANG Q F, ZHOU C H, ZHOU H, et al. Research on rock burst estimation and control measures for auxiliary tunnels in Jinping Ⅱ hydropower station [J]. Rock and Soil Mechanics, 2009, 30(S2): 422–426, 445. DOI: 10.16285/j.rsm.2009.s2.045.
    [2] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and Mode-I fracture toughness of rock materials [M]// ULUSAY R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Cham: Springer International Publishing, 2015: 35−44. DOI: 10.1007/978-3-319-07713-0_3.
    [3] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [4] ULUSAY R, AND HUDSON J A. Suggested methods for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99–103. DOI: 10.1016/0148-9062(78)90003-7.
    [5] HUDSON J A. Tensile strength and the ring test [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1969, 6(1): 91–97. DOI: 10.1016/0148-9062(69)90029-1.
    [6] ZHAO J, LI H B. Experimental determination of dynamic tensile properties of a granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 861–866. DOI: 10.1016/S1365-1609(00)00015-0.
    [7] LUONG M P. Tensile and shear strengths of concrete and rock [J]. Engineering Fracture Mechanics, 1990, 35(1−3): 127–135. DOI: 10.1016/0013-7944(90)90190-R.
    [8] HONDROS G. The evaluation of Poisson’s ratio and the modules of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete [J]. Australian Journal of Applied Science, 1959, 10: 243–268.
    [9] ROSS C A, THOMPSON P Y, TEDESCO J W. Split-hopkinson pressure-bar tests on concrete and mortar in tension and compression [J]. Materials Journal, 1989, 86(5): 475–481. DOI: 10.14359/2065.
    [10] 陈登平, 王永刚, 贺红亮, 等. 强角闪石化橄榄二辉岩的动态拉伸强度实验研究 [J]. 爆炸与冲击, 2005, 25(6): 559–563. DOI: 10.11883/1001-1455(2005)06-0559-05.

    CHEN D P, WANG Y G, HE H L, et al. Dynamic tensile strength of amphibolized olivine websterite (AOW) rock [J]. Explosion and Shock Waves, 2005, 25(6): 559–563. DOI: 10.11883/1001-1455(2005)06-0559-05.
    [11] XIA K W, YAO W, WU B B. Dynamic rock tensile strengths of Laurentian granite: experimental observation and micromechanical model [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 116–124. DOI: 10.1016/j.jrmge.2016.08.007.
    [12] WU B B, CHEN R, XIA K W. Dynamic tensile failure of rocks under static pre-tension [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 12–18. DOI: 10.1016/j.ijrmms.2015.09.003.
    [13] MELLOR M, HAWKES I. Measurement of tensile strength by diametral compression of discs and annuli [J]. Engineering Geology, 1971, 5(3): 173–225. DOI: 10.1016/0013-7952(71)90001-9.
    [14] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2005, 45(2): 186. DOI: 10.1007/BF02428192.
    [15] 李夕兵, 古德生, 赖海辉. 冲击载荷下岩石动态应力-应变全图测试中的合理加载波形 [J]. 爆炸与冲击, 1993, 13(2): 125–130.

    LI X B, GU D S, LAI H H. On the reasonable loading stress waveforms determined by dynamic stress-strain curves of rocks by SHPB [J]. Explosion and Shock Waves, 1993, 13(2): 125–130.
    [16] DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8.
    [17] JIANG F C, LIU R T, ZHANG X X, et al. Evaluation of dynamic fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test [J]. Engineering Fracture Mechanics, 2004, 71(3): 279–287. DOI: 10.1016/S0013-7944(03)00139-5.
    [18] SHI C, YANG W K, YANG J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code [J]. Granular Matter, 2019, 21(2): 38. DOI: 10.1007/s10035-019-0889-3.
    [19] YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code [J]. Granular Matter, 2019, 21(4): 96. DOI: 10.1007/s10035-019-0950-2.
    [20] ZHOU Z L, LI X B, ZOU Y, et al. Dynamic brazilian tests of granite under coupled static and dynamic loads [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 495–505. DOI: 10.1007/s00603-013-0441-4.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  858
  • HTML全文浏览量:  332
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-11-19
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回