气相爆轰波起爆与传播机理研究进展

韩文虎 张博 王成

韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展[J]. 爆炸与冲击, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
引用本文: 韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展[J]. 爆炸与冲击, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
HAN Wenhu, ZHANG Bo, WANG Cheng. Progress in studying mechanisms of initiation and propagation for gaseous detonations[J]. Explosion And Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
Citation: HAN Wenhu, ZHANG Bo, WANG Cheng. Progress in studying mechanisms of initiation and propagation for gaseous detonations[J]. Explosion And Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398

气相爆轰波起爆与传播机理研究进展

doi: 10.11883/bzycj-2021-0398
基金项目: 国家自然科学基金(11972090)
详细信息
    作者简介:

    韩文虎(1982- ),男,博士,副研究员,hanwenhu@bit.edu.cn

    通讯作者:

    王 成(1972- ),男,博士,教授,wangcheng@bit.edu.cn

  • 中图分类号: O381

Progress in studying mechanisms of initiation and propagation for gaseous detonations

  • 摘要: 对近年来气相爆轰起爆及传播在数值模拟和实验方面的研究工作进行了综述,结合作者近几年在这一领域开展的工作,评述了目前的研究热点和难点,简要指出了未来的研究方向。着重介绍了黏性扩散、详细化学反应机理、爆轰胞格不稳定性在爆轰起爆和传播理论和计算研究中的作用,以及爆轰波传播过程中实验技术和理论预测模型的进展。
  • 图  1  自发起爆过程中压力和温度分布[30]

    Figure  1.  Pressure and temperature profile in spontaneous initiation[30]

    图  2  自发波速度与传播距离的关系

    Figure  2.  Speed of spontaneous wave as a function of distance

    图  3  反应波速度与传播距离的关系

    Figure  3.  Speed of reaction wave as function of distance

    图  4  宏观通道中爆燃到爆轰的转变和胞格爆轰

    Figure  4.  Transition from deflagration to detonation and cellular detonation in macro-scale cannel

    图  5  边界层火焰结构与局部爆炸的形成

    Figure  5.  Flame structures of boundary layer and formation of local explosion

    图  6  当量甲烷-空气混合气体的诱导时间与温度的关系[27]

    Figure  6.  Induction time vs. temperature for stoichiometric methane-air mixture[27]

    图  7  层流火焰速度与压力函数关系[27]

    Figure  7.  Laminar flame speed as a function of pressure[27]

    图  8  爆轰形成过程中温度、压力波演化[27]

    Figure  8.  Temperature and pressure profiles in initiation process[27]

    图  9  温度、压力波演化[27]

    Figure  9.  Temperature and pressure frofiles in initiation process[27]

    图  10  温度、压力波演化[27]

    Figure  10.  Temperature and pressure frofiles in initiation process[27]

    图  11  温度、压力波演化: DRM-19机理[27]

    Figure  11.  Temperature and pressure frofiles in initiationprocess: DRM-19 mechanism[27]

    图  12(a)  胞状柱爆轰的最大压力历程[114]

    Figure  12(a).  Maximum pressure history of cellular cylindrical detonation [114]

    12(b)  圆柱形爆轰平均速度[114]

    12(b).  Average velocity of cylindrical detonation[114]

    图  13  圆柱爆轰的最大压力历程[114]

    Figure  13.  Maximun pressure history of cylindrical detonation[114]

    图  14  圆柱形爆轰的平均速度[114]

    Figure  14.  Average velocity of cylindrical detonation[114]

    图  15  胞状圆柱爆轰的锋面结构[114]

    Figure  15.  Frontal structure of celluar cylindrical detonation[114]

    图  16  欧拉和NS方程求得的爆轰平均速度[114]

    Figure  16.  Average velocity of detonation obtained by Euler and NS equations[114]

    图  17  自由空间和约束空间中爆轰平均速度[114]

    Figure  17.  Average velocity of detonation in free and confined spaces[114]

    图  18  不同氩稀释度的最大压力随距离的变化趋势

    Figure  18.  Maximum pressure history of detonation for different Ar dilutions

    图  19  壁面上的最大压力历程和主螺旋轨迹(爆轰波沿着$ x $正向传播)

    Figure  19.  Maximum pressure history and main spinning track of detonation (detonation wave propagates along x direction)

    图  20  壁面上最大压力历程

    Figure  20.  Maximum pressure history on walls

    图  21  不同时刻的爆轰阵面结构

    Figure  21.  Detonation frontal structures at different times

    图  22  不同时刻的阵面结构演化

    Figure  22.  Detonation frontal structures at different times

    图  23  不同时刻的阵面结构

    Figure  23.  Detonation frontal structures at different times

    图  24  2H2-O2-80%Ar的爆轰胞格(p0=20 kPa)

    Figure  24.  Detonation cell for 2H2-O2-80%Ar mixture (p0=20 kPa)

    图  25  2H2-O2-80%Ar的爆轰结构[150]

    Figure  25.  Detonation cellular structure in 2H2-O2-85%Ar mixture[150]

    图  26  2H2-O2-85%Ar爆轰胞格[151]p0=20 kPa)

    Figure  26.  Detonation cells in 2H2-O2-85%Ar mixture[151] (p0=20 kPa)

    图  27  2H2-O2-85%Ar爆轰结构[150]

    Figure  27.  Detonation cellular structure in 2H2-O2-85%Ar mixture[150]

    图  28  2H2-O2-72%N2混合气体[151]

    Figure  28.  Detonation cellular structure in 2H2-O2-72%N2 mixture[151]

    图  29  H2-N2O-60%N2混合气体[151]

    Figure  29.  Detonation cellular structure in H2-N2O-60%N2 mixture[151]

    图  30  不同初始压力下CH4-2O2的胞格结构[156]

    Figure  30.  Detonation cell size of CH4-2O2 mixture under different initial pressures[156]

    图  31  爆轰波接近极限状态的多种传播模式

    Figure  31.  Typical propagation modes near the detonation limits

    图  32  爆轰极限Fay模型与改进模型的对比

    Figure  32.  Theoretical prediction models (Fay model and modified model)

    表  1  CH4-2O2爆轰极限预测模型中的参数

    Table  1.   Parameters of prediction model for CH4-2O2

    p0/kPaΔI/cmΔR/cmαx/mmμe/(Pa·s)ρ/(kg·m3γδ*ξν(DCJū)/(m·s−1ū/DCJ
    50.49420.08395.8920.08506.02×10−50.05951.1781.64×10−30.183 00.070 90.094650.905
    100.22270.04025.5350.03836.09×10−50.11911.1777.57×10−40.084 10.035 60.048360.952
    200.10130.02625.2110.01746.16×10−50.23811.1763.51×10−40.039 00.017 20.023600.976
    400.04640.00954.8820.00806.24×10−50.47621.1751.63×10−40.018 20.082 00.011270.989
    下载: 导出CSV
  • [1] LEE J H S. The detonation phenomenon [M]. Cambridge: Cambridge University Press, 2008.
    [2] 范玮, 李建玲. 爆震组合循环发动机研究导论 [M]. 北京: 科学出版社, 2014.
    [3] ZHOU R, WANG J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines [J]. Combustion and Flame, 2012, 159(12): 3632–3645. DOI: 10.1016/j.combustflame.2012.07.007.
    [4] TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations [J]. Journal of Fluid Mechanics, 2014, 744: 111–128. DOI: 10.1017/jfm.2014.78.
    [5] POLUDNENKO A Y, CHAMBERS J, AHMED K, et al. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae [J]. Science, 2019, 366(6465): eaau7365. DOI: 10.1126/science.aau7365.
    [6] SHEPHERD J E. Detonation in gases [J]. Proceedings of the Combustion Institute, 2009, 32(1): 83–98. DOI: 10.1016/j.proci.2008.08.006.
    [7] CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
    [8] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001.
    [9] ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion [J]. Combustion and Flame, 2007, 148(1): 4–47. DOI: 10.1016/j.combustflame.2006.07.010.
    [10] 姜宗林, 滕宏辉. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究 [J]. 中国科学: 物理学 力学 天文学, 2012, 42(4): 421−435. DOI: 10.1360/132011-945.

    JIANG Z L, TENG H H. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42: 421–435. DOI: 10.1360/132011-945.
    [11] 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展 [J]. 力学进展, 2012, 42(2): 129–140. DOI: 10.6052/1000-0992-2012-2-20120202.

    JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics [J]. Advances in Mechanics, 2012, 42(2): 129–140. DOI: 10.6052/1000-0992-2012-2-20120202.
    [12] ZHANG B, BAI C H. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels–an overview [J]. Fuel, 2014, 117: 294–308. DOI: 10.1016/j.fuel.2013.09.042.
    [13] 张博, 白春华. 气相爆轰动力学特征研究进展 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(7): 665−681. DOI: 10.1360/N132013-00028.

    ZHANG B, BAI C H. Research progress on the dynamic characteristics of gaseous detonation [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44: 665–681. DOI: 10.1360/N132013-00028.
    [14] 范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征 [J]. 力学进展, 2021, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.

    FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion [J]. Advances in Mechanics, 2021, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
    [15] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.
    [16] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展 [J]. 推进技术, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.

    WANG B, XIE Q F, WEN H C, et al. Reseach progress of detonation engine [J]. Jounal of Propusion Technology, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.
    [17] WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. DOI: 10.1016/j.proci.2012.10.005.
    [18] OPPENHEIM A K. A contribution to the theory of the development and stability of detonation in gases [J]. Journal of Applied Mechanics, 1952, 19(1): 63–71. DOI: 10.1115/1.4010408.
    [19] OPPENHEIM A K, STERN R A. On the development of gaseous detonation—analysis of wave phenomena [J]. Symposium (International) on Combustion, 1958, 7(1): 837–850. DOI: 10.1016/S0082-0784(58)80127-7.
    [20] URTIEW P A, OPPENHEIM A K. Experimental observations of the transition to detonation in an explosive gas [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1440): 13–28. DOI: 10.1098/rspa.1966.0223.
    [21] DAI P, QI C, CHEN Z. Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient [J]. Proceedings of the Combustion Institute, 2017, 36: 3643–3650. DOI: 10.1016/j.proci.2016.08.014.
    [22] MEYER J W, OPPENHEIM A K. On the shock-induced ignition of explosive gases [J]. Symposium (International) on Combustion, 1971, 13(1): 1153–1164. DOI: 10.1016/S0082-0784(71)80112-1.
    [23] VALIEV D M, BYCHKOV V, AKKERMAN V, et al. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration [J]. Physical Review E, 2009, 80(3): 036317. DOI: 10.1103/PhysRevE.80.036317.
    [24] LIBERMAN M A, IVANOV M F, PEIL O E, et al. Self-acceleration and fractal structure of outward freely propagating flames [J]. Physics of Fluids, 2004, 16(7): 2476–2482. DOI: 10.1063/1.1729852.
    [25] HE L T, CLAVIN P. Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases [J]. Symposium (International) on Combustion, 1992, 24(1): 1861–1867. DOI: 10.1016/S0082-0784(06)80218-3.
    [26] BRADLEY D, CRESSWELL T M, PUTTOCK J S. Flame acceleration due to flame-induced instabilities in large-scale explosions [J]. Combustion and Flame, 2001, 124(4): 551–559. DOI: 10.1016/S0010-2180(00)00208-X.
    [27] WANG C, QIAN C G, LIU J N, et al. Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air [J]. Combustion and Flame, 2018, 197: 400–415. DOI: 10.1016/j.combustflame.2018.08.017.
    [28] LIBERMAN M, WANG C, QIAN C G, et al. Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures [J]. Combustion Theory and Modelling, 2019, 23(3): 467–495. DOI: 10.1080/13647830.2018.1551578.
    [29] PAN J Y, DONG S, WEI H Q, et al. Temperature gradient induced detonation development inside and outside a hotspot for different fuels [J]. Combustion and Flame, 2019, 205: 269–277. DOI: 10.1016/j.combustflame.2019.04.003.
    [30] HAN W H, LIANG W K, WANG C, et al. Spontaneous initiation and development of hydrogen-oxygen detonation with ozone sensitization [J]. Proceedings of the Combustion Institute, 2021, 38(3): 3575–3583. DOI: 10.1016/j.proci.2020.06.239.
    [31] BURKE M P, CHAOS M, JU Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. International Journal of Chemical Kinetics, 2012, 44(7): 444–474. DOI: 10.1002/kin.20603.
    [32] KIVERIN A D, KASSOY D R, IVANOV M F, et al. Mechanisms of ignition by transient energy deposition: regimes of combustion wave propagation [J]. Physical Review E, 2013, 87(3): 033015. DOI: 10.1103/PhysRevE.87.033015.
    [33] DAI P , CHEN Z, GAN X H, et al. Autoignition and detonation development from a hot spot inside a closed chamber: Effect of end wall reflection [J]. Proceedings of the Combustion Institute, 2021, 4: 5905–5913. DOI: 10.1016/j.proci.2020.09.025.
    [34] HE L T, CLAVIN P. Theoretical and numerical analysis of the photochemical initiation of detonations in hydrogen-oxygen mixtures [J]. Symposium (International) on Combustion, 1994, 25(1): 45–51.
    [35] RADULESCU M I, SHARPE G J, BRADLEY D. A universal parameter for quantifying explosion hazards, detonability and hot spot formation, the χ number [C] // Proceedings of the Seventh International Seminar on Fire and Explosion Hazards. Singapore: Research Publishing, 2013: 617−626.
    [36] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. DOI: 10.1080/13647830500307758.
    [37] RADULESCU M I, NG H D, LEE J H S, et al. The effect of argon dilution on the stability of acetylene/oxygen detonations [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2825–2831. DOI: 10.1016/S1540-7489(02)80345-5.
    [38] SHCHELKIN K I. Influence of tube roughness on the formation and detonation propagation in gas [J]. Journal of Experimental and Theoretical Physics, 1940, 10: 823–827.
    [39] MALLARD E, LE CHATELIER H. Thermal model for flame propagation [J]. Annales des Mines, 1883, 4: 379–568.
    [40] HAN W H, GAO Y, LAW C K. Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: an integrated mechanistic study [J]. Combustion and Flame, 2017, 176: 285–298. DOI: 10.1016/j.combustflame.2016.10.010.
    [41] LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures [J]. Acta Astronautica, 2010, 67(7–8): 688–701. DOI: 10.1016/j.actaastro.2010.05.024.
    [42] GAMEZO V N, KHOKHLOV A M, ORAN E S. The influence of shock bifurcations on shock-flame interactions and DDT [J]. Combustion and Flame, 2001, 126(4): 1810–1826. DOI: 10.1016/S0010-2180(01)00291-7.
    [43] LEE J H S. Initiation of gaseous detonation [J]. Annual Review of Physical Chemistry, 1977, 28: 75–104. DOI: 10.1146/annurev.pc.28.100177.000451.
    [44] LEE J H S. Dynamic parameters of gaseous detonations [J]. Annual Review of Fluid Mechanics, 1984, 16: 311–336. DOI: 10.1146/annurev.fl.16.010184.001523.
    [45] LAFITTE P. Sur la propagation de l'onde explosive [J]. Comptes Rendus de l'Académie des Sciences, 1923, 177: 178–180.
    [46] ZHANG B, NG H D, LEE J H S. Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge [J]. Shock Waves, 2012,22: 1–7.
    [47] ZELDOVICH Y B, KOGARKO S M, SIMONOV N N. An experimental investigation of spherical detonation of gases [J]. Soviet Physics–Technical Physics, 1956, 1(8): 1689–1713.
    [48] BULL D C, ELSWORTH J E, QUINN C P, et al. A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen [J]. Journal of Physics D: Applied Physics, 1976, 9(14): 1991–2000. DOI: 10.1088/0022-3727/9/14/009.
    [49] BULL D C, ELSWORTH J E, HOOPER G. Concentration limits to unconfined detonation of ethane-air [J]. Combustion and Flame, 1979, 35: 27–40. DOI: 10.1016/0010-2180(79)90004-X.
    [50] ALEKSEEV V I, DOROFEEV S B, SIDOROV V P. Direct initiation of detonations in unconfined gasoline sprays [J]. Shock Waves, 1996, 6(2): 67–71. DOI: 10.1007/BF02515189.
    [51] KNYSTAUTAS R, LEE J H. On the effective energy for direct initiation of gaseous detonations [J]. Combustion and Flame, 1976, 27: 221–228. DOI: 10.1016/0010-2180(76)90025-0.
    [52] LEE J H, MATSUI H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures [J]. Combustion and Flame, 1977, 28: 61–66. DOI: 10.1016/0010-2180(77)90008-6.
    [53] ZHANG B, LIU H, WANG C. Detonation propagation limits in highly argon diluted acetylene-oxygen mixtures in channels [J]. Experimental Thermal and Fluid Science, 2018, 90: 125–131.
    [54] MATSUI H, LEE J H. Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations [J]. Combustion and Flame, 1976, 27: 217–220. DOI: 10.1016/0010-2180(76)90024-9.
    [55] MATSUI H, LEE J H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269–1280. DOI: 10.1016/S0082-0784(79)80120-4.
    [56] BERETS D J, GREENE E F, KISTIAKOWSKY G B. Gaseous detonations. I. stationary waves in hydrogen-oxygen mixtures [J]. Journal of the American Chemical Society, 1950, 72(3): 1080–1086. DOI: 10.1021/ja01159a008.
    [57] MOORADIAN A J, GORDON W E. Gaseous detonation. I. Initiation of detonation [J]. Journal of Chemical Physics, 1951, 19(9): 1166–1172. DOI: 10.1063/1.1748497.
    [58] NORRISH R G W. The study of combustion by photochemical methods [J]. Symposium (International) on Combustion, 1965,10(1): 1−18.
    [59] NORRISH R G W, PORTER G, THRUSH B A. Studies of the explosive combustion of hydrocarbons by kinetic spectroscopy—Ⅱ. comparative investigations of hydrocarbons and a study of the continuous absorption spectra [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 227(1171): 423–433. DOI: 10.1098/rspa.1955.0021.
    [60] THRUSH B A. The homogeneity of explosions initiated by flash photolysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 233(1192): 147–151. DOI: 10.1098/rspa.1955.0251.
    [61] KLIMKIN V F, SOLOUKHIN R I, WOLANSKY P. Initial stages of a spherical detonation directly initiated by a laser spark [J]. Combustion and Flame, 1973, 21(1): 111–117. DOI: 10.1016/0010-2180(73)90012-6.
    [62] KATAOKA H, KATO H, ISHII K. Direct initiation of acetylene-oxygen mixture using laser ablation [C] // Proceedings of the 22nd International Colloqium on the Dynamics of Explosions and Reactive Systems. Belarus, 2009.
    [63] LEE J H, KNYSTAUTAS R, YOSHIKAWA N. Photochemical initiation of gaseous detonations [J]. Acta Astronautica, 1978, 5(11–12): 971–982. DOI: 10.1016/0094-5765(78)90003-6.
    [64] 解立峰, 郭学永, 果宏, 等. 燃料-空气云雾爆轰的直接引爆实验研究 [J]. 爆炸与冲击, 2003, 23(1): 78–80. DOI: 10.3321/j.issn:1001-1455.2003.01.015.

    XIE L F, GUO X Y, GUO H. Experimental study on the direct initiation of detonation in fuel-air sprays [J]. Explosion and Shock Waves, 2003, 23(1): 78–80. DOI: 10.3321/j.issn:1001-1455.2003.01.015.
    [65] 姚干兵, 解立峰, 刘家骢. 碳氢燃料云雾直接起爆感度的实验研究 [J]. 弹道学报, 2006, 18(3): 9–13. DOI: 10.3969/j.issn.1004-499X.2006.03.003.

    YAO G B, XIE L F, LIU J C. Experimental study on the direction initiation sensitivity of hydrocarbon-air cloud [J]. Journal of Ballistics, 2006, 18(3): 9–13. DOI: 10.3969/j.issn.1004-499X.2006.03.003.
    [66] ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. DOI: 10.1016/j.proci.2010.06.165.
    [67] ZHANG B, NG H D, MÉVEL R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(9): 5707–5716. DOI: 10.1016/j.ijhydene.2011.01.175.
    [68] KAMENSKIHS V, NG H D, LEE J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combustion and Flame, 2010, 157(9): 1795–1799. DOI: 10.1016/j.combustflame.2010.02.014.
    [69] 宋述忠, 彭金华, 陈网桦, 等. 几种燃料云雾爆轰临界起爆能的研究 [J]. 爆炸与冲击, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.

    SONG S Z, PENG J H, CHEN W H, et al. Study on critical initiation energy of several fuel-air mixture [J]. Explosion and Shock Waves, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.
    [70] LEE J H S, HIGGINS A J. Comments on criteria for direct initiation of detonation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3503–3521. DOI: 10.1098/rsta.1999.0506.
    [71] KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [72] KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems [J]. Combustion and Flame, 2010, 157(11): 2063–2077. DOI: 10.1016/j.combustflame.2010.04.011.
    [73] ZELDOVICH Y B. Regime classification of an exothermic reaction with nonuniform initial conditions [J]. Combustion and Flame, 1980, 39(2): 211–214. DOI: 10.1016/0010-2180(80)90017-6.
    [74] ZEL’DOVICH Y B, LIBROVICH V B, MAKHVILADZE G M, et al. On the development of detonation in a non-uniformly preheated gas [J]. Astronautica Acta, 1970, 15(5): 313–321.
    [75] LIBERMAN M A, KIVERIN A D, IVANOV M F. On detonation initiation by a temperature gradient for a detailed chemical reaction models [J]. Physics Letters A, 2011, 375(17): 1803–1808. DOI: 10.1016/j.physleta.2011.03.026.
    [76] LIBERMAN M A, KIVERIN A D, IVANOV M F. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models [J]. Physical Review E, 2012, 85(5): 056312. DOI: 10.1103/PhysRevE.85.056312.
    [77] GU X J, EMERSON D R, BRADLEY D. Modes of reaction front propagation from hot spots [J]. Combustion and Flame, 2003, 133(1–2): 63–74. DOI: 10.1016/S0010-2180(02)00541-2.
    [78] KUZNETSOV M, LIBERMAN M, MATSUKOV I. Experimental study of the preheat zone formation and deflagration to detonation transition [J]. Combustion Science and Technology, 2010, 182(11–12): 1628–1644. DOI: 10.1080/00102202.2010.497327.
    [79] IVANOV M F, KIVERIN A D, LIBERMAN M A. Flame acceleration and DDT of hydrogen-oxygen gaseous mixtures in channels with no-slip walls [J]. International Journal of Hydrogen Energy, 2011, 36(13): 7714–7727. DOI: 10.1016/j.ijhydene.2011.03.134.
    [80] IVANOV M F, KIVERIN A D, LIBERMAN M A. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model [J]. Physical Review E, 2011, 83(5): 056313. DOI: 10.1103/PhysRevE.83.056313.
    [81] IVANOV M F, KIVERIN A D, YAKOVENKO I S, et al. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls [J]. International Journal of Hydrogen Energy, 2013, 38(36): 16427–16440. DOI: 10.1016/j.ijhydene.2013.08.124.
    [82] SEPULVEDA J, ROUSSO A, HA H, et al. Kinetic enhancement of microchannel detonation transition by ozone addition to acetylene mixtures [J]. AIAA Journal, 2019, 57(2): 476–481. DOI: 10.2514/1.J057773.
    [83] WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames [J]. Combustion Science and Technology, 1981, 27(1–2): 31–43. DOI: 10.1080/00102208108946970.
    [84] FRANZELLI B, RIBER E, SANJOSÉ M, et al. A two-step chemical scheme for kerosene-air premixed flames [J]. Combustion and Flame, 2010, 157(7): 1364–1373. DOI: 10.1016/j.combustflame.2010.03.014.
    [85] JONES W P, LINDSTEDT R P. Global reaction schemes for hydrocarbon combustion [J]. Combustion and Flame, 1988, 73(3): 233–249. DOI: 10.1016/0010-2180(88)90021-1.
    [86] ZAMBON A C, CHELLIAH H K. Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems [J]. Combustion and Flame, 2007, 150(1): 71–91. DOI: 10.1016/j.combustflame.2007.03.003.
    [87] KAZAKOV A, FRENKLACH M. Reduced reaction sets based on GRI-Mech 1.2: 19-species reaction set [EB/OL]. University of California, USA: Berkeley, 1994. http://combustion.berkeley.edu/drm/.
    [88] SMOOKE M D. Reduced kinetic mechanisms and asymptotic approximations for methane-air flames [M]. Berlin: Springer, 1991.
    [89] GOSWAMI M, DERKS S C R, COUMANS K, et al. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures [J]. Combustion and Flame, 2013, 160(9): 1627–1635. DOI: 10.1016/j.combustflame.2013.03.032.
    [90] GOSWAMI M, COUMANS K, BASTIAANS R J M, et al. Numerical simulations of flat laminar premixed methane-air flames at elevated pressure [J]. Combustion Science and Technology, 2014, 186(10): 1447–1459. DOI: 10.1080/00102202.2014.934619.
    [91] HU E J, LI X T, MENG X, et al. Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures [J]. Fuel, 2015, 158: 1–10. DOI: 10.1016/j.fuel.2015.05.010.
    [92] FRENKLACH M, MORIARTY N W, EITENEER B, et al. Gri-Mech 3.0 [EB/OL]. 1995. http://combustion.berkeley.edu/gri-mech/version30/text30.html.
    [93] ZENG W, MA H A, LIANG Y T, et al. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture [J]. Journal of Advanced Research, 2015, 6(2): 189–201. DOI: 10.1016/j.jare.2014.01.003.
    [94] ROZENCHAN G, ZHU D L, LAW C K, et al. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1461–1470. DOI: 10.1016/S1540-7489(02)80179-1.
    [95] GU X J, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
    [96] KOBAYASHI H, NAKASHIMA T, TAMURA T, et al. Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa [J]. Combustion and Flame, 1997, 108(1): 111–117. DOI: 10.1016/S0010-2180(96)00103-4.
    [97] HASSAN M I, AUNG K T, FAETH G M. Measured and predicted properties of laminar premixed methane/air flames at various pressures [J]. Combustion and Flame, 1998, 115(4): 539–550. DOI: 10.1016/S0010-2180(98)00025-X.
    [98] PARK O, VELOO P S, LIU N, et al. Combustion characteristics of alternative gaseous fuels [J]. Proceedings of the Combustion Institute, 2011, 33(1): 887–894. DOI: 10.1016/j.proci.2010.06.116.
    [99] EGOLFOPOULOS F N, LAW C K. Chain mechanisms in the overall reaction orders in laminar flame propagation [J]. Combustion and Flame, 1990, 80(1): 7–16. DOI: 10.1016/0010-2180(90)90049-W.
    [100] EGOLFOPOULOS F N, CHO P, LAW C K. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures [J]. Combustion and Flame, 1989, 76(3): 375–391. DOI: 10.1016/0010-2180(89)90119-3.
    [101] NG H D, HIGGINS A J, KIYANDA C B, et al. Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations [J]. Combustion Theory and Modelling, 2005, 9(1): 159–170. DOI: 10.1080/13647830500098357.
    [102] WATT S D, SHARPE G J. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves [J]. Journal of Fluid Mechanics, 2005, 522: 329–356. DOI: 10.1017/S0022112004001946.
    [103] ECKETT C A, QUIRK J J, SHEPHERD J E. The role of unsteadiness in direct initiation of gaseous detonations [J]. Journal of Fluid Mechanics, 2000, 421: 147–183. DOI: 10.1017/S0022112000001555.
    [104] SHORT M, STEWART D S. Cellular detonation stability. Part 1. a normal-mode linear analysis [J]. Journal of Fluid Mechanics, 1998, 368: 229–262. DOI: 10.1017/S0022112098001682.
    [105] SHORT M. A nonlinear evolution equation for pulsating Chapman−Jouguet detonations with chain-branching kinetics [J]. Journal of Fluid Mechanics, 2001, 430: 381–400. DOI: 10.1017/S0022112000003116.
    [106] PINTGEN F, ECKETT C A, AUSTIN J M, et al. Direct observations of reaction zone structure in propagating detonations [J]. Combustion and Flame, 2003, 133(3): 211–229. DOI: 10.1016/S0010-2180(02)00458-3.
    [107] EDWARDS D H, JONES A T. The variation in strength of transverse shocks in detonation waves [J]. Journal of Physics D: Applied Physics, 1978, 11(2): 155–166. DOI: 10.1088/0022-3727/11/2/013.
    [108] DORMAL M, LIBOUTON J C, VAN TIGGELEN P J. Etude expérimentale des paramètres à l’intérieur d’une maille de detonation [J]. Explosifs, 1983, 36: 76–94.
    [109] SHARPE G J. Transverse waves in numerical simulations of cellular detonations [J]. Journal of Fluid Mechanics, 2001, 447: 31–51. DOI: 10.1017/S0022112001005535.
    [110] TAKAI R, YONEDA K, HIKITA T. Study of detonation wave structure [J]. Symposium (International) on Combustion, 1975, 15(1): 69–78. DOI: 10.1016/S0082-0784(75)80285-2.
    [111] RADULESCU M I, LEE J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes [J]. Combustion and Flame, 2002, 131(1): 29–46. DOI: 10.1016/S0010-2180(02)00390-5.
    [112] SUBBOTIN V A. Two kinds of transverse wave structures in multifront detonation [J]. Combustion, Explosion and Shock Waves, 1975, 11(1): 83–88. DOI: 10.1007/BF00742862.
    [113] STREHLOW R A. Gas pase detonations: recent developments [J]. Combustion and Flame, 1968, 12(2): 81–101. DOI: 10.1016/0010-2180(68)90083-7.
    [114] HAN W H, KONG W J, LAW C K. Propagation and failure mechanism of cylindrical detonation in free space [J]. Combustion and Flame, 2018, 192: 295–313. DOI: 10.1016/j.combustflame.2018.01.049.
    [115] SÁNCHEZ A L, WILLIAMS F A. Recent advances in understanding of flammability characteristics of hydrogen [J]. Progress in Energy and Combustion Science, 2014, 41: 1–55. DOI: 10.1016/j.pecs.2013.10.002.
    [116] MAZAHERI K, MAHMOUD Y, SABZPOOSHANI M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls [J]. Combustion and Flame, 2015, 162(6): 2638–2659. DOI: 10.1016/j.combustflame.2015.03.015.
    [117] RADULESCU M I, SHARPE G J, LAW C K, et al. The hydrodynamic structure of unstable cellular detonations [J]. Journal of Fluid Mechanics, 2007, 580: 31–81. DOI: 10.1017/S0022112007005046.
    [118] RADULESCU M I, SHARPE G J, LEE J H S, et al. The ignition mechanism in irregular structure gaseous detonations [J]. Proceedings of the Combustion Institute, 2005, 30(2): 1859–1867. DOI: 10.1016/j.proci.2004.08.047.
    [119] MAXWELL B M, BHATTACHARJEE R R, LAU-CHAPDELAINE S S M, et al. Influence of turbulent fluctuations on detonation propagation [J]. Journal of Fluid Mechanics, 2017, 818: 646–696. DOI: 10.1017/jfm.2017.145.
    [120] FARIA L M, KASIMOV A R. Qualitative modeling of the dynamics of detonations with losses [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2015–2023. DOI: 10.1016/j.proci.2014.07.006.
    [121] WATT S D, SHARPE G J. One-dimensional linear stability of curved detonations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2049): 2551–2568. DOI: 10.1098/rspa.2004.1290.
    [122] SOW A, CHINNAYYA A, HADJADJ A. Mean structure of one-dimensional unstable detonations with friction [J]. Journal of Fluid Mechanics, 2014, 743: 503–533. DOI: 10.1017/jfm.2014.49.
    [123] CLAVIN P, WILLIAMS F A. Dynamics of planar gaseous detonations near Chapman-Jouguet conditions for small heat release [J]. Combustion Theory and Modelling, 2002, 6(1): 127–139. DOI: 10.1088/1364-7830/6/1/307.
    [124] HE L T, LEE J H S. The dynamical limit of one-dimensional detonations [J]. Physics of Fluids, 1995, 7(5): 1151–1158. DOI: 10.1063/1.868556.
    [125] SHORT M, KAPILA A K, QUIRK J J. The chemical-gas dynamic mechanisms of pulsating detonation wave instability [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3621–3637. DOI: 10.1098/rsta.1999.0513.
    [126] SHARPE G J, FALLE S A E G. One-dimensional numerical simulations of idealized detonations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455(1983): 1203–1214. DOI: 10.1098/rspa.1999.0355.
    [127] MEYER J W, URTIEW P A, OPPENHEIM A K. On the inadequacy of gasdynamic processes for triggering the transition to detonation [J]. Combustion and Flame, 1970, 14(1): 13–20. DOI: 10.1016/S0010-2180(70)80005-0.
    [128] CLAVIN P. Nonlinear dynamics of shock and detonation waves in gases [J]. Combustion Science and Technology, 2017, 189(5): 747–775. DOI: 10.1080/00102202.2016.1260562.
    [129] WHITE D R, CARY K H. Structure of gaseous detonation. Ⅱ. generation of laminar detonation [J]. The Physics of Fluids, 1963, 6(5): 749–750. DOI: 10.1063/1.1706806.
    [130] STREHLOW R A. Multi-dimensional detonation wave structure [J]. Astronautica Acta, 1970, 15: 345–357.
    [131] CAMPBELL C, WOODHEAD D W. CCCCI—The ignition of gases by an explosion-wave. Part Ⅰ. carbon monoxide and hydrogen mixtures [J]. Journal of the Chemical Society, 1926, 129: 3010–3021. DOI: 10.1039/JR9262903010.
    [132] LEE J H S, SOLOUKHIN R I, OPPENHEIM A K. Current views on gaseous detonation [J]. Astronautica Acta, 1969, 14: 565–584.
    [133] SCHOTT G L. Observations of the structure of spinning detonation [J]. The Physics of Fluids, 1965, 8(5): 850–865. DOI: 10.1063/1.1761328.
    [134] HANANA M, LEFEBVRE M H. Pressure profiles in detonation cells with rectangular and diagonal structures [J]. Shock Waves, 2001, 11(2): 77–88. DOI: 10.1007/PL00004068.
    [135] TSUBOI N, ASAHARA M, ETO K, et al. Numerical simulation of spinning detonation in square tube [J]. Shock Waves, 2008, 18(4): 329–344. DOI: 10.1007/s00193-008-0153-y.
    [136] TSUBOI N, HAYASHI A K. Numerical study on spinning detonations [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2389–2396. DOI: 10.1016/j.proci.2006.07.262.
    [137] TSUBOI N, KATOH S, HAYASHI A K. Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2783–2788. DOI: 10.1016/S1540-7489(02)80339-X.
    [138] WILLIAMS D N, BAUWENS L, ORAN E S. Detailed structure and propagation of three-dimensional detonations [J]. Symposium (International) on Combustion, 1996, 26(2): 2991–2998. DOI: 10.1016/S0082-0784(96)80142-1.
    [139] DELEDICQUE V, PAPALEXANDRIS M V. Computational study of three-dimensional gaseous detonation structures [J]. Combustion and Flame, 2006, 144(4): 821–837. DOI: 10.1016/j.combustflame.2005.09.009.
    [140] TEODORCZYK A, LEE J H S, KNYSTAUTAS R. Photographic study of the structure and propagation mechanisms of quasidetonations in rough tubes [M] // LEYER J C, BORISOV A A, KUHL A L, et al. Dynamics of Detonations and Explosions: Detonations. Washington: American Institute of Aeronautics and Astronautics, 1991: 233−240.
    [141] TEODORCZYK A. Fast deflagrations and detonations in obstacle-filled channels [J]. Journal of Power Technologies, 1995, 79: 145–178.
    [142] TEODORCZYK A, DROBNIAK P, DABKOWSK A. Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5887–5893. DOI: 10.1016/j.ijhydene.2008.11.120.
    [143] FAY J A. A mechanical theory of spinning detonation [J]. The Journal of Chemical Physics, 1952, 20(6): 942–950. DOI: 10.1063/1.1700655.
    [144] LEE J H, KNYSTAUTAS R, CHAN C K. Turbulent flame propagation in obstacle-filled tubes [J]. Symposium (International) on Combustion, 1985, 20(1): 1663–1672. DOI: 10.1016/S0082-0784(85)80662-7.
    [145] DOROFEEV S B, KUZNETSOV M S, ALEKSEEV V I, et al. Evaluation of limits for effective flame acceleration in hydrogen mixtures [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 583–589. DOI: 10.1016/S0950-4230(01)00050-X.
    [146] WOLANSKI P, LIU J C, KAUFFMAN C W, et al. On the mechanism of influence of obstacles on the flame propagation [J]. Archivum Combustionis, 1988, 8: 15.
    [147] RADULESCU M I. The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes [D]. Montreal: McGill University, 2003.
    [148] NG H D, JU Y G, LEE J H S. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis [J]. International Journal of Hydrogen Energy, 2007, 32(1): 93–99. DOI: 10.1016/j.ijhydene.2006.03.012.
    [149] ZHANG B, LIU H, LI Y C. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures [J]. Fuel, 2019, 253: 305–310. DOI: 10.1016/j.fuel.2019.05.006.
    [150] AUSTIN J M. The role of instability in gaseous detonation [D]. Pasadena: California Institute of Technology, 2003.
    [151] PINTGEN F, AUSTIN J M, SHEPHERD J E. Detonation front structure: variety and characterization [C] // Confined Detonations and Pulse Detonation Engines. Moscow: Torus-Press, 2003: 105−116.
    [152] ZHANG B, LIU H, YAN B J, et al. Experimental study of detonation limits in methane-oxygen mixtures: determining tube scale and initial pressure effects [J]. Fuel, 2020, 259: 116220. DOI: 10.1016/j.fuel.2019.116220.
    [153] GAO Y, ZHANG B, NG H D, et al. An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures [J]. International Journal of Hydrogen Energy, 2016, 41(14): 6076–6083. DOI: 10.1016/j.ijhydene.2016.02.130.
    [154] FAY J A. Two-dimensional gaseous detonations: velocity deficit [J]. The Physics of Fluids, 1959, 2(3): 283–289. DOI: 10.1063/1.1705924.
    [155] KOMATSU M, TAKAYAMA K, OHTANI K, et al. Effect of debris fragments on direct initiation of spherical detonation waves in stoichiometric oxygen/hydrogen mixtures [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2437–2443. DOI: 10.1016/j.proci.2006.08.111.
    [156] ZHANG B, SHEN X B, PANG L, et al. Methane-oxygen detonation characteristics near their propagation limits in ducts [J]. Fuel, 2016, 177: 1–7. DOI: 10.1016/j.fuel.2016.02.089.
    [157] 张超, 唐豪, 李明, 等. 当量比和间隙尺寸对爆震波传播过程的影响 [J]. 航空动力学报, 2012, 27(9): 1948–1957. DOI: 10.13224/j.cnki.jasp.2012.09.013.

    ZHANG C, TANG H, LI M, et al. Effects of equivalence ratio and gap size on the propagation behavior of detonations [J]. Journal of Aeerospace Power, 2012, 27(9): 1948–1957. DOI: 10.13224/j.cnki.jasp.2012.09.013.
    [158] WU M H, BURKE M P, SON S F, et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2429–2436. DOI: 10.1016/j.proci.2006.08.098.
    [159] WU M H, KUO W C. Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2017–2024. DOI: 10.1016/j.proci.2012.07.008.
    [160] WU M H, WANG C Y. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2287–2293. DOI: 10.1016/j.proci.2010.07.081.
    [161] CAMARGO A, NG H D, CHAO J, et al. Propagation of near-limit gaseous detonations in small diameter tubes [J]. Shock Waves, 2010, 20(6): 499–508. DOI: 10.1007/s00193-010-0253-3.
    [162] HUANG Y, JI H, LIEN F, et al. Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes [J]. Shock Waves, 2014, 24(4): 375–392. DOI: 10.1007/s00193-014-0499-2.
    [163] WU Y W, LEE J H S. Stability of spinning detonation waves [J]. Combustion and Flame, 2015, 162(6): 2660–2669. DOI: 10.1016/j.combustflame.2015.03.021.
    [164] GAO Y, NG H D, LEE J H S. Experimental characterization of galloping detonations in unstable mixtures [J]. Combustion and Flame, 2015, 162(6): 2405–2413. DOI: 10.1016/j.combustflame.2015.02.007.
    [165] WANG C, ZHAO Y Y, ZHANG B. Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 120–126. DOI: 10.1016/j.jlp.2016.05.008.
    [166] 喻健良, 高远, 闫兴清, 等. 高浓度氩气稀释气体爆轰波临界管径和临界间距关系 [J]. 爆炸与冲击, 2015, 35(4): 603–608. DOI: 10.11883/1001-1455(2015)04-0603-06.

    YU J L, GAO Y, YAN X Q, et al. Correation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures [J]. Explosion and Shock Waves, 2015, 35(4): 603–608. DOI: 10.11883/1001-1455(2015)04-0603-06.
    [167] 喻健良, 高远, 闫兴清, 等. 初始压力对爆轰波在管道内传播的影响 [J]. 大连理工大学学报, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.

    YU J L, GAO Y, YAN X Q, et al. Effect of initial ressure on propagation of detonation wave in round tube [J]. Journal of Dalian University of Technology, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.
    [168] 夏昌敬, 周凯元. 气相爆轰波在90°矩形弯管中传播时胞格结构的演化 [J]. 爆炸与冲击, 2005, 25(2): 151–156. DOI: 10.11883/1001-1455(2005)02-0151-06.

    XIA C J, ZHOU K Y. Cellular structure evolution of gaseous detonation in a 90° rectangular bend [J]. Explosion and Shock Waves, 2005, 25(2): 151–156. DOI: 10.11883/1001-1455(2005)02-0151-06.
    [169] 夏昌敬, 周凯元, 沈兆武. 初始条件影响气体非稳定爆轰波在弯管中传播特性的实验研究 [J]. 中国科学技术大学学报, 2004, 34(1): 92−97. DOI: 10.3969/j.issn.0253-2778.2004.01.014.

    XIA C J, ZHOU K Y, SHEN Z W. Experimental study on effects of initial conditions for propagation characteristics of unsteady gaseous detonation in channels with a bend [J]. Journal of University of Science and Technology of China, 2004, 34(1): 92−97. DOI: 10.3969/j.issn.0253-2778.2004.01.014.
    [170] YOSHIDA K, HAYASHI K, MORII Y, et al. Study on behavior of methane/oxygen gas detonation near propagation limit in small diameter tube: effect of tube diameter [J]. Combustion Science and Technology, 2016, 188(11): 2012–2025. DOI: 10.1080/00102202.2016.1213989.
    [171] ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. DOI: 10.1016/j.combustflame.2017.04.025.
    [172] ZHANG B, PANG L, GAO Y. Detonation limits in binary fuel blends of methane/hydrogen mixtures [J]. Fuel, 2016, 168: 27–33. DOI: 10.1016/j.fuel.2015.11.073.
    [173] LEE J H S, JESUTHASAN A, NG H D. Near limit behavior of the detonation velocity [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1957–1963. DOI: 10.1016/j.proci.2012.05.036.
    [174] JACKSON S, LEE B J, SHEPHERD J E. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen [J]. Combustion and Flame, 2016, 167: 24–38. DOI: 10.1016/j.combustflame.2016.02.030.
    [175] ISHII K, MONWAR M. Detonation propagation with velocity deficits in narrow channels [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2359–2366. DOI: 10.1016/j.proci.2010.07.051.
    [176] ISHII K, KATAOKA H, KOJIMA T. Initiation and propagation of detonation waves in combustible high speed flows [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2323–2330. DOI: 10.1016/j.proci.2008.05.029.
    [177] GAO Y, NG H D, LEE J H S. Near-limit propagation of gaseous detonations in narrow annular channels [J]. Shock Waves, 2017, 27(2): 199–207. DOI: 10.1007/s00193-016-0639-y.
    [178] HALOUA F, BROUILLETTE M, LIENHART V, et al. Characteristics of unstable detonations near extinction limits [J]. Combustion and Flame, 2000, 122(4): 422–438. DOI: 10.1016/S0010-2180(00)00134-6.
    [179] 颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.

    YAN B J, ZHANG B, GAO Y, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
    [180] GOODERUM P B. An experimental study of the turbulent boundary layer on a shock-tube wall: NACA-TN-4243 [R]. Washington: Langley Aeronautical Laboratory, 1958.
    [181] LIU L J, ZHANG Q. Numerical study of cellular structure in detonation of a stoichiometric mixture of vapor JP-10 in air using a quasi-detailed chemical kinetic model [J]. Aerospace Science and Technology, 2019, 91: 669–678. DOI: 10.1016/j.ast.2019.07.017.
    [182] WANG L Q, MA H H, SHEN Z W, et al. Detonation behaviors of syngas-oxygen in round and square tubes [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14775–14786. DOI: 10.1016/j.ijhydene.2018.05.163.
    [183] CRANE J, SHI X, SINGH A V, et al. Isolating the effect of induction length on detonation structure: hydrogen-oxygen detonation promoted by ozone [J]. Combustion and Flame, 2019, 200: 44–52. DOI: 10.1016/j.combustflame.2018.11.008.
    [184] ZHANG B, LIU H. Theoretical prediction model and experimental investigation of detonation limits in combustible gaseous mixtures [J]. Fuel, 2019, 258: 116132. DOI: 10.1016/j.fuel.2019.116132.
    [185] MORLEY C. Gaseq: A Chemical equilibrium program for windows [EB/OL]. 2007. http://www.gaseq.co.uk/.
    [186] BOECK L R, MÉVEL R, FIALA T, et al. High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2-air mixtures [J]. Experiments in Fluids, 2016, 57(6): 105. DOI: 10.1007/s00348-016-2191-z.
    [187] HAN W H, KONG W J, GAO Y, et al. The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations [J]. Journal of Fluid Mechanics, 2017, 813: 458–481. DOI: 10.1017/jfm.2016.873.
    [188] MAHMOUDI Y, MAZAHERI K. Triple point collision and hot spots in detonations with regular structure [J]. Combustion Science and Technology, 2012, 184(7): 1135–1151. DOI: 10.1080/00102202.2012.664004.
    [189] MAHMOUDI Y, MAZAHERI K. High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations [J]. Acta Astronautica, 2015, 115: 40–51. DOI: 10.1016/j.actaastro.2015.05.014.
    [190] EINFELDT B, MUNZ C D, ROE P L, et al. On Godunov-type methods near low densities [J]. Journal of Computational Physics, 1991, 92: 273−295. DOI: 10.1016/0021-9991(91)90211-3.
    [191] LINDE T, ROE P L. Robust Euler codes [C] // Proceedings of the 13th Computational Fluid Dynamics Conference. USA: Snowmass Village, 1997.
    [192] 张涵信. 差分计算中激波上、下游出现波动的探讨 [J]. 空气动力学学报, 1984, 1: 12–19.

    ZHANG H X. The exploration of the spatial oscillations in finite difference solutions for navier-stokes shocks [J]. Acta Aerodyn Sin, 1984, 1: 12−19.
    [193] 张涵信. 无波动、无自由参数的耗散差分格式 [J]. 空气动力学学报, 1988, 6: 143–165.

    ZHANG H X. Non-oscillatory dissipation and non-free-parameter difference scheme [J]. Acta Aerodynamica Sinica, 1988, 6: 143–165.
    [194] 沈孟育, 李海东, 刘秋生. 用解析离散法构造WENO-FCT格式 [J]. 空气动力学报, 1998, 16: 56−63.

    SHEN M Y, LI H D, LIU Q S. Analytic discrete WENO-FCT scheme [J]. Acta Aerodynamica Sinica, 1998, 16: 56–63.
    [195] ZHANG X X, SHU C W. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes [J]. Journal of Computational Physics, 2010, 229(23): 8918–8934. DOI: 10.1016/j.jcp.2010.08.016.
    [196] ZHANG X X, SHU C W. Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms [J]. Journal of Computational Physics, 2011, 230: 1238−1248. DOI: 10.1016/j.jcp.2010.10.036.
    [197] SHEN Y, SHEN H, LIU K X, et al. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme [J]. Chinese Physics B, 2016, 25(11): 114702. DOI: 10.1088/1674-1056/25/11/114702.
    [198] 韦伟, 翁春生. 基于三维两相CE/SE方法的点火位置对固体燃料PDE的影响研究 [J]. 弹道学报, 2016, 28(3): 65–70. DOI: 10.3969/j.issn.1004-499X.2016.03.012.

    WEI W, WENG C S. Analysis of the influence of different ignition location on pulse detonation engine with solid fuel based on three-dimensional two-phase CE/SE method [J]. Journal of Ballistics, 2016, 28(3): 65–70. DOI: 10.3969/j.issn.1004-499X.2016.03.012.
  • 加载中
图(33) / 表(1)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  688
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-12-12
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2021-12-05

目录

    /

    返回文章
    返回