比色测温技术在瞬态爆炸温度场测量中的应用研究

张启威 程扬帆 夏煜 王中华 汪泉 沈兆武

张启威, 程扬帆, 夏煜, 王中华, 汪泉, 沈兆武. 比色测温技术在瞬态爆炸温度场测量中的应用研究[J]. 爆炸与冲击, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477
引用本文: 张启威, 程扬帆, 夏煜, 王中华, 汪泉, 沈兆武. 比色测温技术在瞬态爆炸温度场测量中的应用研究[J]. 爆炸与冲击, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477
ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477
Citation: ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477

比色测温技术在瞬态爆炸温度场测量中的应用研究

doi: 10.11883/bzycj-2021-0477
基金项目: 国家自然科学基金(11972046);安徽省自然科学基金(2108085Y02);安徽省高校骨干领军人才项目(ZY7092102);安徽省高校自然科学基金(KJ2020ZD30);科研育人示范项目(KYX202119);安徽理工大学研究生创新基金(2021CX2026, 2021CX2092)
详细信息
    作者简介:

    张启威(1997- ),男,硕士研究生, 944357044@qq.com

    通讯作者:

    程扬帆(1987- ),男,博士,副教授,博士生导师,cyf518@mail.ustc.edu.cn

  • 中图分类号: O389; TJ06; J450.6

Application of colorimetric pyrometer in the measurement of transient explosion temperature

  • 摘要: 为了研究瞬态爆炸温度场分布规律,基于高速相机、黑体辐射理论、图像传感器的拜尔阵列和自编python代码,构建了依据比色测温原理的高速二维温度测试系统,并对添加不同含量TiH2的乳化炸药、TiH2粉尘以及C2H2气体的爆炸温度场进行了测量。实验结果表明:TiH2的加入可以显著提高炸药的爆炸温度和火球持续时间,当乳化炸药中的TiH2质量分数为6%时,爆炸平均温度最大值为3048 K,相比纯乳化炸药提高了41.5%;此外,TiH2粉尘云火焰平均温度呈现先增大,再稳定,最后减小的趋势,浓度为500 g/m3的粉尘云火焰平均温度高于浓度为833 g/m3的平均温度,其最高平均温度分别为2231 和 2192 K;10%C2H2/90%空气预混气体(即体积分数为10%的C2H2和90%空气组成)的早期火焰温度均匀,内部略低于边缘温度,随着火焰膨胀,火焰边缘温度逐渐升高,火焰平均温度开始降低。与传统爆炸测温手段相比,比色测温方法可以准确测量某区域的瞬态爆炸温度,获得温度分布云图,为研究瞬态爆轰温度规律及影响因素提供了一种新的技术手段。
  • 图  1  比色测温流程

    Figure  1.  Colorimetric temperature measurement process

    图  2  拜尔插值运算

    Figure  2.  Bayer interpolation

    图  3  高温钨丝灯的标定实验

    Figure  3.  Calibration using a high-temperature tungsten filament lamp

    图  4  粉末的粒度分布

    Figure  4.  The particle size distribution of powders

    图  5  炸药爆炸及比色测温实验

    Figure  5.  The explosive explosion and colorimetric temperature measurement experiment

    图  6  粉尘爆炸实验系统

    Figure  6.  Dust explosion experimental system

    图  7  气体爆炸测试装置

    Figure  7.  Gas explosion test system

    图  8  无TiH2粉末乳化炸药不同时刻的爆炸温度

    Figure  8.  The explosion temperature maps of emulsion explosive without TiH2 powders at different times

    图  9  含6% TiH2粉末的乳化炸药在不同时间的爆炸温度

    Figure  9.  Explosion temperature maps of the emulsion explosive with 6% TiH2 powder at different times

    图  10  质量浓度为500 g/m3的TiH2尘云中的火焰温度发展

    Figure  10.  Flame temperature development in the 500 g/m3 TiH2 dust clouds

    图  11  质量浓度为833 g/m3的TiH2尘云中的火焰温度发展

    Figure  11.  Flame temperature development in the 833 g/m3 TiH2 dust clouds

    图  12  不同质量浓度的TiH2粉尘云温度曲线

    Figure  12.  Temperature curves of TiH2 dust clouds with different concentrations

    图  13  10%C2H2/70%空气火焰发展的温度分布图

    Figure  13.  Evolution of the flame temperature distribution of the 10%-C2H2/70%-air mixture

    表  1  乳化基质的质量分数

    Table  1.   Mass fraction of emulsion matrix

    NH4NO3NaNO3C18H38C12H26C24H44O6H2O
    0.750.100.040.010.020.08
    下载: 导出CSV

    表  2  乳化炸药样品的组成

    Table  2.   Composition of emulsion explosive samples

    样品质量分数/%
    乳化基质GMsTiH2
    A9640
    B9046
    下载: 导出CSV
  • [1] KAMLET M J, JACOBS S J. Chemistry of detonations: I: a simple method for calculating detonation properties of C-H-N-O explosives [J]. The Journal of Chemical Physics, 1968, 48(1): 23–35. DOI: 10.1063/1.1667908.
    [2] BASSETT W P, DLOTT D D. High dynamic range emission measurements of shocked energetic materials: octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) [J]. Journal of Applied Physics, 2016, 119(22): 225103. DOI: 10.1063/1.4953353.
    [3] FROST D L, CLEMENSON J M, GOROSHIN S, et al. Thermocouple temperature measurements in metalized explosive fireballs [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 899–911. DOI: 10.1002/prep.202000328.
    [4] LEBEL L S, BROUSSEAU P, ERHARDT L, et al. Measurements of the temperature inside an explosive fireball [J]. Journal of Applied Mechanics, 2013, 80(3): 031702. DOI: 10.1115/1.4023561.
    [5] LEWIS W K, RUMCHIK C G. Measurement of apparent temperature in post-detonation fireballs using atomic emission spectroscopy [J]. Journal of Applied Physics, 2009, 105(5): 056104. DOI: 10.1063/1.3089251.
    [6] ADUEV B P, NURMUKHAMETOV D R, LISKOV I Y, et al. Measuring the temperature of PETN explosion products with iron inclusions [J]. Combustion, Explosion, and Shock Waves, 2017, 53(3): 349–352. DOI: 10.1134/S0010508217030133.
    [7] OLOKUN A, LI B, PRAKASH C, et al. Examination of local microscale-microsecond temperature rise in HMX-HTPB energetic material under impact loading [J]. JOM, 2019, 71(10): 3531–3535. DOI: 10.1007/s11837-019-03709-z.
    [8] WANG L Y, DU H M, XU H. Compensation method for infrared temperature measurement of explosive fireball [J]. Thermochimica Acta, 2019, 680: 178342. DOI: 10.1016/j.tca.2019.178342.
    [9] GOROSHIN S, FROST D L, LEVINE J, et al. Optical pyrometry of fireballs of metalized explosives [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(3): 169–181. DOI: 10.1002/prep.200600024.
    [10] DENSMORE J M, HOMAN B E, BISS M M, et al. High-speed two-camera imaging pyrometer for mapping fireball temperatures [J]. Applied Optics, 2011, 50(33): 6267–6271. DOI: 10.1364/AO.50.006267.
    [11] CHANG P J, MOGI T, DOBASHI R. An investigation on the dust explosion of micron and nano scale aluminium particles [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. DOI: 10.1016/j.jlp.2021.104437.
    [12] KEYVAN S, ROSSOW R, ROMERO C. Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer [J]. Fuel, 2006, 85(5/6): 796–802. DOI: 10.1016/j.fuel.2005.08.033.
    [13] ADAMS JR J E, HAMILTON JR J F. Adaptive color plane interpolation in single sensor color electronic camera: US5652621A [P]. 1997-07-29.
    [14] CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224.
    [15] YAO Y L, CHENG Y F, ZHANG Q W, et al. Explosion temperature mapping of emulsion explosives containing TiH2 powders with the two-color pyrometer technique [J/OL]. Defence Technology, (2021-10-12)[2021-11-15]. https://doi.org/ 10.1016/j.dt.2021.09.020. DOI: 10.1016/j.dt.2021.09.020.
    [16] CHENG Y F, MA H H, SHEN Z W. Detonation characteristics of emulsion explosives sensitized by MgH2 [J]. Combustion, Explosion, and Shock Waves, 2013, 49(5): 614–619. DOI: 10.1134/S0010508213050134.
    [17] 程扬帆, 方华, 刘文近, 等. 乳化炸药中空功能微囊的制备方法及性能表征 [J]. 含能材料, 2019, 27(9): 792–800. DOI: 10.11943/CJEM2019039.

    CHENG Y F, FANG H, LIU W J, et al. Preparation and application of functional hollow microcapsules in emulsion explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(9): 792–800. DOI: 10.11943/CJEM2019039.
    [18] SILVESTROV V V, BORDZILOVSKII S A, KARAKHANOV S M. Detonation temperature measurement of the emulsion explosive [J]. Doklady Physics, 2014, 59(9): 398–400. DOI: 10.1134/S1028335814070131.
    [19] CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. DOI: 10.1002/prep.201700045.
    [20] 刘文近, 程扬帆, 陆松来, 等. PVAc弹性微球包覆的高能化学点火具的点火性能 [J]. 含能材料, 2018, 26(6): 530–536. DOI: 10.11943/j.issn.1006-9941.2018.06.011.

    LIU W J, CHENG Y F, LU S L, et al. Ignition performance of the high energy chemical igniter coated with a PVAc elastic microsphere [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 530–536. DOI: 10.11943/j.issn.1006-9941.2018.06.011.
    [21] YOUNG G, JIAN G Q, JACOB R, et al. Decomposition and ignition characteristics of titanium hydride at high heating rates [J]. Combustion Science and Technology, 2015, 187(8): 1182–1194. DOI: 10.1080/00102202.2015.1019619.
    [22] 王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响[J]. 中南大学学报(自然科学版), 2022, 53(2): 433−442.

    WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture[J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433−442.DOI: 10.11817/j.issn.1672-7207.2022.02.008
    [23] 高志崇. 烃燃烧反应机理探讨 [J]. 辽宁大学学报(自然科学版), 2002, 29(3): 266–271. DOI: 10.3969/j.issn.1000-5846.2002.03.017.

    GAO Z C. Mechanism of hydrocarbon combustion reaction [J]. Journal of Liaoning University (Natural Sciences Edition), 2002, 29(3): 266–271. DOI: 10.3969/j.issn.1000-5846.2002.03.017.
    [24] CHINTERSINGH K L, NGUYEN Q, SCHOENITZ M, et al. Combustion of boron particles in products of an air–acetylene flame [J]. Combustion and Flame, 2016, 172: 194–205. DOI: 10.1016/j.combustflame.2016.07.014.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  77
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-11-22
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回