线起爆膨胀柱壳实验加载及诊断技术

李英雷 刘明涛 陈艳 张世文 汤铁钢

李英雷, 刘明涛, 陈艳, 张世文, 汤铁钢. 线起爆膨胀柱壳实验加载及诊断技术[J]. 爆炸与冲击, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484
引用本文: 李英雷, 刘明涛, 陈艳, 张世文, 汤铁钢. 线起爆膨胀柱壳实验加载及诊断技术[J]. 爆炸与冲击, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484
LI Yinglei, LIU Mingtao, CHEN Yan, ZHANG Shiwen, TANG Tiegang. Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives[J]. Explosion And Shock Waves, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484
Citation: LI Yinglei, LIU Mingtao, CHEN Yan, ZHANG Shiwen, TANG Tiegang. Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives[J]. Explosion And Shock Waves, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484

线起爆膨胀柱壳实验加载及诊断技术

doi: 10.11883/bzycj-2021-0484
基金项目: 国家自然科学基金(11932018)
详细信息
    作者简介:

    李英雷(1974- ),男,博士,副研究员,ylli@ustc.edu

    通讯作者:

    张世文(1971- ),男,博士,副研究员,zhangswxueshu@163.com

  • 中图分类号: O346.1

Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives

  • 摘要: 基于电爆炸丝引爆炸药、继而驱动尼龙对金属柱壳进行碰撞加载的方式,在金属柱壳中部、半柱高范围内实现了一维柱面膨胀加载。同时,基于沿轴向的加载(或径向速度)一致性和沿环向的加载(或径向速度)轴对称性,提出了一维柱面加载的有效性判据。相比于滑移爆轰加载,一维柱面加载方式具有应力状态相对简单、易简化为二维轴对称问题分析的优点。在柱壳断裂诊断方面,建立了分布式表面速度诊断方法来监测柱壳圆周范围内的初始断裂。其原理为:均匀承载壳体断裂引起的局部承载失效将导致均匀速度曲线簇出现分叉(或演化趋势变化)。与高速分幅照相诊断方法相比,分布式表面速度诊断方法可准确获取柱壳圆周范围内的初始断裂信息(含断裂时刻和断裂位置)。利用建立的线起爆膨胀柱壳实验加载和诊断技术,获得了304钢和45钢柱壳的一维柱面动态拉伸初始断裂性能数据(含断裂应变、平均应变率),其中,45钢柱壳的断裂应变(或延展性)低于304钢柱壳的。
  • 图  1  线起爆实验装置

    Figure  1.  The experimental device with linear initiation

    图  2  304钢柱壳外壁的径向速度曲线

    Figure  2.  The radial velocity curves of the outer surface of the 304 steel cylinder

    图  3  45钢柱壳外壁的径向速度曲线

    Figure  3.  The radial velocity curves of the outer surface of the 45 steel cylinder

    图  4  45钢柱壳的高速分幅照相结果

    Figure  4.  The high-speed framing photography results of the 45 steel cylinder

    图  5  304钢柱壳的初始轮廓与运动35 μs后的轮廓

    Figure  5.  The contours of the outer-surface of the 304 steel cylinder at the initial state and the deformed state after 35 μs

    图  6  304钢柱壳沿环向90°方向、不同高度的外壁位移状态

    Figure  6.  The displacement of the outer surface of the 45 steel cylinder at various heights and the circle angle of 90°

    表  1  304钢和45钢柱壳外壁各测点的速度曲线起跳时刻

    Table  1.   Jump-up times in velocity curves of the outside surfaces of the 304 steel and 45 steel cylinders

    柱壳材料t11/μst12/μst13/μst21/μst22/μst23/μst24/μs
    304钢10.2710.1710.0910.2710.2710.1410.25
    45钢12.1311.9711.8712.1312.1112.06
    下载: 导出CSV

    表  2  钢柱壳的初始断裂参数

    Table  2.   Initial fracture parameters of steel cylinders

    材料断裂时刻/μs断裂应变/%平均应变率/s−1
    304钢51370.9×104
    45钢37241.0×104
    下载: 导出CSV
  • [1] GURNEY R W. The initial velocity of fragments from bombs: shells and grenades: Report No. 405 [R]. Aberdeen, UK: Army Ballistic Research Laboratory, 1943.
    [2] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [3] GRADY D E, OLSEN M L. A statistics and energy based theory of dynamic fragmentation [J]. International Journal of Impact Engineering, 2003, 29(1): 293–306. DOI: 10.1016/j.ijimpeng.2003.09.026.
    [4] HOPSON M V, SCOTT C M, PATEL R. Computational comparisons of homogeneous and statistical descriptions of AerMet100 steel subjected to high strain rate loading [J]. International Journal of Impact Engineering, 2011, 38(6): 451–455. DOI: 10.1016/j.ijimpeng.2010.10.016.
    [5] ZHOU F, MOLINARI J F, RAMESH K T. An elastic-visco-plastic analysis of ductile expanding ring [J]. International Journal of Impact Engineering, 2006, 33(1): 880–891. DOI: 10.1016/j.ijimpeng.2006.09.070.
    [6] 郑宇轩, 陈磊, 胡时胜, 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律 [J]. 力学学报, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.

    ZHENG Y X, CHEN L, HU S S, et al. Characteristics of fragment size distribution of ductile materials fragmentized under high strainrate tension [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
    [7] ZHANG H, RAVI-CHANDAR K. On the dynamics of localization and fragmentation: Ⅳ. expansion of Al 6061-O tubes [J]. International Journal of Fracture, 2010, 163(1/2): 41–65. DOI: 10.1007/s10704-009-9441-5.
    [8] LOVINGER Z, RITTEL D, ROSENBERG Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders [J]. Journal of the Mechanics and Physics of Solids, 2015, 79: 134–156. DOI: 10.1016/j.jmps.2015.04.007.
    [9] TAYLOR G I. The scientific papers of Sir Geoffrey Ingram Taylor: Volume Ⅲ: aerodynamics and the mechanics of projectiles and explosions [M]. Cambridge, UK: Cambridge University Press, 1963: 387–393.
    [10] HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
    [11] 胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.

    HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
    [12] BEETLE J C, RINNOVATORE J V, CORRIE J D. Fracture morphology of explosively loaded steel cylinders [C]//MARSZALEK D S. Proceedings of the Fourth Annual Scanning Electron Microscope Symposium and Workshop on Forensic Applications of the Scanning Electron Microscope. Chicago, Illnois, USA, 1971: 137–144.
    [13] 李永池, 李大红, 魏志刚, 等. 内爆炸载荷下圆管变形、损伤和破坏规律的研究 [J]. 力学学报, 1999, 31(4): 442–449. DOI: 10.6052/0459-1879-1999-4-1995-052.

    LI Y C, LI D H, WEI Z G, et al. Research on the deformation, damage and fracture rules of circular tubes under inside-explosive loading [J]. Acta Mechanica Sinica, 1999, 31(4): 442–449. DOI: 10.6052/0459-1879-1999-4-1995-052.
    [14] 张世文, 刘仓理, 于锦泉. 微缺陷对圆管膨胀断裂的影响 [J]. 爆炸与冲击, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.

    ZHANG S W, LIU C L, YU J Q. Influences of microdefects on expanding fracture of a metal cylinder [J]. Explosion and Shock Waves, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
    [15] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [16] 任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.

    REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
    [17] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109(1): 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [18] HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [19] 张振涛, 郭昭亮, 蒲国红, 等. 爆炸丝线起爆装置研制及应用 [J]. 强激光与粒子束, 2014, 26(3): 035004. DOI: 10.3788/HPLPB201426.035004.

    ZHANG Z T, GUO Z L, PU G H, et al. Development and application of exploding wire initiation system [J]. High Power Laser and Particle Beams, 2014, 26(3): 035004. DOI: 10.3788/HPLPB201426.035004.
    [20] SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
    [21] FROST D L, LOISEAU J, GOROSHIN S, et al. Fracture of explosively compacted aluminum particles in a cylinder [J]. Bulletin of the American Physical Society, 2017, 1793(1): 120019. DOI: 10.1063/1.4971701.
    [22] 金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
    [23] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 172–173.
    [24] 李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239.

    LI Y L, HU S S, LI Y H. Research on dynamic behaviors of A95 ceramics under compression [J]. Explosion and Shock Waves, 2004, 24(3): 233–239.
    [25] 刘宏月, 梁大开, 韩晓林, 等. 基于模量/应变波耦合特性的FBG碳纤维增强塑料复合材料拉伸断裂监测 [J]. 复合材料学报, 2014, 31(1): 26–32. DOI: 10.3969/j.issn.1000-3851.2014.01.004.

    LIU H Y, LIANG D K, HAN X L, et al. FBG fracture monitoring for CFRP based on coupling characteristic of modulus/strain wave [J]. Acta Materiae Compositae Sinica, 2014, 31(1): 26–32. DOI: 10.3969/j.issn.1000-3851.2014.01.004.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  86
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-09-06
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回