Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy
-
摘要: 采用HMH-206高速材料试验机开展了6061-T6铝合金在0.001~100 s−1应变率范围内的静、动态拉伸力学性能实验,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对6061-T6铝合金流动应力和应变率敏感性指数的影响,并基于实验结果对Johnson-Cook本构模型进行了修正。结合缺口试件的实验结果和模拟数据,得到了材料的Johnson-Cook失效模型参数,并对模型的准确性和适用性进行了验证。结果表明,在拉伸载荷作用下,6061-T6铝合金表现出明显的应变硬化特征和应变率敏感性,其流动应力随应变率的升高而提高,修正的Johnson-Cook本构模型可以描述材料的动态塑性流动行为,建立的Johnson-Cook失效模型能够表征材料的断裂失效行为。
-
关键词:
- 6061-T6铝合金 /
- 动态力学性质 /
- 应变率敏感性 /
- Johnson-Cook本构模型 /
- 失效参数
Abstract: The quasi-static and dynamic tensile mechanical properties of 6061-T6 aluminum alloy in a strain rate range from 0.001 s−1 to 100 s−1 were investigated by using a HMH-206 high-speed material testing machine. The stress-strain response characteristics and strain rate sensitivity of the 6061-T6 aluminum alloy were analyzed, and the effects of strain rate on the flow stress and strain rate sensitivity index were discussed. Based on the experimental results, the Johnson-Cook constitutive model was modified to describe the plastic flow characteristics of the 6061-T6 aluminum alloy under dynamic tensile loading. In addition, the relationship between the fracture strain and stress triaxiality of the notched specimens was established by experiments and simulations, and the values of the parameters in the Johnson-Cook failure model were obtained according to the experimental and simulation results. The results show that the 6061-T6 aluminum alloy exhibits obvious strain hardening characteristics and strain rate strengthening effects, and the flow stress increases with the increase of true strain and strain rate. The strain rate sensitivity index of the material is affected by the coupling effect of strain and strain rate. During the tensile process, the Mises stress of the notched specimens was symmetrically distributed about the minimum cross-section, and the stress triaxiality at the minimum cross-section was symmetrically distributed about the center line along the width and thickness directions. Furthermore, the fracture strain of the material decreases gradually with the increase of the stress triaxiality, and increases approximately linearly with the increasing dimensionless logarithmic strain rate. The plastic flow characteristics of the 6061-T6 aluminum alloy can be described by the modified Johnson-Cook constitutive model, and the parameters in the Johnson-Cook failure model of the material can be obtained by the experiments and simulations on the notched specimens. The verification results indicate that the established models can predict the tensile mechanical response and fracture failure behavior of the 6061-T6 aluminum alloy under a complex stress state. -
表 1 6061-T6铝合金的化学成分(质量分数)
Table 1. Chemical composition of 6061-T6 aluminum alloy (mass fraction)
% 元素 Si Fe Cu Mn Mg Cr Zn Ti Al 含量 0.4 0.7 0.15 0.15 0.5 0.04 0.25 0.15 余量 -
[1] 高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究 [J]. 爆炸与冲击, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.GAO Y L, SUN X H. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles [J]. Explosion and Shock Waves, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119. [2] 王礼立. 高应变率下材料动态力学性能 [J]. 力学与实践, 1982, 4(1): 9–19, 26.WANG L L. Dynamic mechanical properties of materials under high strain rate [J]. Mechanics and Engineering, 1982, 4(1): 9–19, 26. [3] 任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数 [J]. 华南理工大学学报(自然科学版), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.REN J B, WANG C X, ZHANG X Y, et al. Johnson-Cook constitutive model and failure parameters of 2A97 Al-Li alloy [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554. [4] COWPER G R, SYMONDS P S. Strain hardening and strain-rate effect in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1957. [5] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [6] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024. [7] JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015. [8] SU X Y, ZHOU L, JING L, et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading [J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015–2025. DOI: 10.1007/s11665-020-04720-1. [9] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333. [10] 张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07. [11] 贾东, 黄西成, 胡文军, 等. 基于J-C模型的镁合金MB2动静态拉伸破坏行为 [J]. 爆炸与冲击, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.JIA D, HUANG X C, HU W J, et al. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model [J]. Explosion and Shock Waves, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07. [12] 门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.MEN J B, LU Y H, JIANG J W, et al. Johnson-Cook failure model parameters of Tantalum-Tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550. [13] 余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究 [J]. 爆炸与冲击, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.YU W Q, YU R, CUI S T. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334. [14] 郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163. [15] BOBBILI R, MADHU V. Flow and fracture characteristics of near alpha titanium alloy [J]. Journal of Alloys and Compounds, 2016, 684: 162–170. DOI: 10.1016/j.jallcom.2016.05.155. [16] 丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展 [J]. 材料科学与工程学报, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.DING X Q, HE G Q, CHEN C S, et al. Advance in studies of 6000 aluminum alloy for automobile [J]. Journal of Materials Science and Engineering, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039. [17] AMBRIZ R R, BARRERA G, GARCÍA R, et al. A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA) [J]. Materials & Design, 2009, 30(7): 2446–2453. DOI: 10.1016/j.matdes.2008.10.025. [18] LEE W S, SHYU J C, CHIOU S T. Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy [J]. Scripta Materialia, 1999, 42(1): 51–56. DOI: 10.1016/S1359-6462(99)00308-5. [19] ZHU D J, MOBASHER B, RAJAN S D, et al. Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates [J]. Journal of Engineering Mechanics, 2011, 137(10): 669–679. DOI: 10.1061/(ASCE)EM.1943-7889.0000264. [20] ACHARYA S, GUPTA R K, GHOSH J, et al. High strain rate dynamic compressive behaviour of Al6061-T6 alloys [J]. Materials Characterization, 2017, 127: 185–197. DOI: 10.1016/j.matchar.2017.03.005. [21] ODESHI A G, OWOLABI G M, SINGH M N K, et al. Deformation and fracture behavior of alumina particle-reinforced Al 6061-T6 composite during dynamic mechanical loading [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2674–2680. DOI: 10.1007/s11661-007-9242-2. [22] 孟宪明, 谢书港, 方锐, 等. B340-590DP双相高强钢板的动态变形行为 [J]. 钢铁研究学报, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.MENG X M, XIE S G, FANG R, et al. Dynamic deformation behavior of B340-590DP steel sheet [J]. Journal of Iron and Steel Research, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425. [23] YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077. [24] SUO T, CHEN Y Z, LI Y L, et al. Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates [J]. Materials Science and Engineering A, 2013, 560: 545–551. DOI: 10.1016/j.msea.2012.09.100. [25] 谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正 [J]. 爆炸与冲击, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis [J]. Explosion and Shock Waves, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07. [26] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006. [27] BRIDGMAN P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure [M]. New York, USA: McGraw-Hill, 1952. [28] 贾东, 黄西成, 莫军. 基于应变路径和分布效应的应力三轴度确定方法 [J]. 科学技术与工程, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.JIA D, HUANG X C, MO J. A method to determine stress triaxiality based on strain path and distribution effect [J]. Science Technology and Engineering, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002. [29] 衣海娇, 甄莹, 曹宇光, 等. 6061-T6铝合金断裂应变与应力三轴度关系研究 [J]. 机械强度, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.YI H J, ZHEN Y, CAO Y G, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy [J]. Journal of Mechanical Strength, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.