直撞式霍普金森压杆二次加载技术

钟东海 郭鑫 熊雪梅 郑宇轩 宋力

钟东海, 郭鑫, 熊雪梅, 郑宇轩, 宋力. 直撞式霍普金森压杆二次加载技术[J]. 爆炸与冲击, 2023, 43(4): 044101. doi: 10.11883/bzycj-2022-0210
引用本文: 钟东海, 郭鑫, 熊雪梅, 郑宇轩, 宋力. 直撞式霍普金森压杆二次加载技术[J]. 爆炸与冲击, 2023, 43(4): 044101. doi: 10.11883/bzycj-2022-0210
ZHONG Donghai, GUO Xin, XIONG Xuemei, ZHENG Yuxuan, SONG Li. Direct-impact double-loading Hopkinson bar technique[J]. Explosion And Shock Waves, 2023, 43(4): 044101. doi: 10.11883/bzycj-2022-0210
Citation: ZHONG Donghai, GUO Xin, XIONG Xuemei, ZHENG Yuxuan, SONG Li. Direct-impact double-loading Hopkinson bar technique[J]. Explosion And Shock Waves, 2023, 43(4): 044101. doi: 10.11883/bzycj-2022-0210

直撞式霍普金森压杆二次加载技术

doi: 10.11883/bzycj-2022-0210
基金项目: 国家自然科学基金面上项目(12272193,12072169,11972203)
详细信息
    作者简介:

    钟东海(1997- ),男,硕士研究生,zhongdonghai1997@foxmail.com

    通讯作者:

    郑宇轩(1986- ),男,博士,副教授,zhengyuxuan@nbu.edu.cn

  • 中图分类号: O347.4

Direct-impact double-loading Hopkinson bar technique

  • 摘要: 利用传统分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验技术来实现试件在较低应变率下的大变形时,需要使用超长的压杆系统,杆件的加工和实验空间限制了该技术的推广应用。鉴于此,提出一种直撞式霍普金森压杆二次加载实验技术,利用透射杆中的应力波在其末端的准刚性壁反射实现对试件的二次加载,并分析了准刚性质量块尺寸对二次加载的影响规律;采用二点波分离方法对叠加的应力波进行了有效分离和计算,在总长4 m的压杆系统中实现了1.2 ms的长历时加载,并可以准确获得试件的加载应变率曲线和应力应变关系。建立了直撞式霍普金森压杆二次加载有限元模型,数值仿真结果表明,该实验技术能有效地实现试件的二次加载,与超长SHPB系统获得的仿真结果相比较,两者的试件应力应变关系完全一致。利用该技术对1100铝合金材料进行动态压缩实验,实现了其在102 s−1量级应变率下的大变形动态力学性能测试。
  • 图  1  DDHB系统

    Figure  1.  DDHB system

    图  2  应力波传播的X-t图和σ-v

    Figure  2.  Stress wave propagation X-t diagram and stress-velocity σ-v diagram

    图  3  不同条件下的应变率时程曲线

    Figure  3.  Strain rate time history curves under different conditions

    图  4  波分离示意图

    Figure  4.  Schematic diagram of stress wave separation

    图  5  质量块的反射系数

    Figure  5.  Reflection coefficient of rigid mass block

    图  6  不同撞击杆长度对加载的影响

    Figure  6.  Influence of different strike bar length on loading process

    图  7  DDHB和SHPB仿真结果

    Figure  7.  DDHB and SHPB simulation results

    图  8  数据处理结果与直接处理结果

    Figure  8.  Data processing and direct extraction results

    图  9  实验装置图

    Figure  9.  Diagram of experimental device

    图  10  速度为5.81 m/s时的原始波形、分离的左右行波以及试件端面的速度和力

    Figure  10.  The original waveform, the separated left and right traveling waves, and the velocity and force at the end face of the specimen with a velocity of 5.81 m/s

    图  11  DDHB测试铝合金的实验结果

    Figure  11.  Experimental results of testing aluminum alloy by DDHB

  • [1] SONG B, SYN C J, GRUPIDO C L, et al. A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials [J]. Experimental Mechanics, 2008, 48(6): 809–815. DOI: 10.1007/s11340-007-9095-z.
    [2] ZHAO H, GARY G. A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1185–1202. DOI: 10.1016/S0022-5096(96)00117-2.
    [3] SHIM J, MOHR D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, Intermediate and High Strain Rates [J]. International Journal of Impact Engineering, 2009, 36(9): 1116–1127. DOI: 10.1016/j.ijimpeng.2008.12.010.
    [4] DHARAN C K H, HAUSER F E. Determination of stress-strain characteristics at very high strain rates [J]. Experimental Mechanics, 1970, 10(9): 370–376. DOI: 10.1007/BF02320419.
    [5] WULF G L. The high strain rate compression of 7039 aluminium [J]. International Journal of Mechanical Sciences, 1978, 20(9): 609–615. DOI: 10.1016/0020-7403(78)90019-X.
    [6] GORHAM D A, POPE P H, FIELD J E. An improved method for compressive stress-strain measurements at very high strain rates [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1992, 438(1902): 153–170. DOI: 10.1098/rspa.1992.0099.
    [7] SHIOIRI J, SAKINO K, SANTOH S. Strain rate sensitivity of flow stress at very high rates of strain [M]//KAWATA K, SHIOIRI J. Constitutive Relation in High/Very High Strain Rates. Tokyo: Springer, 1996. DOI: 10.1007/978-4-431-65947-1_6.
    [8] ZHAO H, ELNASRI I, ABDENNADHER S. An experimental study on the behaviour under impact loading of metallic cellular materials [J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 757–774. DOI: 10.1016/j.ijmecsci.2004.12.012.
    [9] LIU J G, HE S Y, ZHAO H, et al. Experimental investigation on the dynamic behaviour of metal foam: from yield to densification [J]. International Journal of Impact Engineering, 2018, 114: 69–77. DOI: 10.1016/j.ijimpeng.2017.12.016.
    [10] 陈浩, 郭鑫, 宋力. 直接撞击式大变形霍普金森压杆实验技术 [J]. 宁波大学学报(理工版), 2018, 31(4): 70–73. DOI: 10.3969/j.issn.1001-5132.2018.04.012.

    CHEN H, GUO X, SONG L. A direct impact Hopkinson pressure bar technique for material testing in large deformation [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(4): 70–73. DOI: 10.3969/j.issn.1001-5132.2018.04.012.
    [11] GILAT A, SEIDT J D, MATRKA T A, et al. A new device for tensile and compressive testing at intermediate strain rates [J]. Experimental Mechanics, 2019, 59(5): 725–731. DOI: 10.1007/s11340-019-00488-1.
    [12] WHITTINGTON W R, OPPEDAL A L, FRANCIS D K, et al. A novel intermediate strain rate testing device: The serpentine transmitted bar [J]. International Journal of Impact Engineering, 2015, 81: 1–7. DOI: 10.1016/j.ijimpeng.2015.02.009.
    [13] LINDHOLM U S. Some experiments with the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5): 317–335. DOI: 10.1016/0022-5096(64)90028-6.
    [14] XIA K, CHEN R, HUANG S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing [J]. Review of Scientific Instruments, 2008, 79(5): 053906. DOI: 10.1063/1.2928810.
    [15] 巫绪涛, 胡时胜, 张芳荣. 两点应变测量法在SHPB测量技术上的运用 [J]. 爆炸与冲击, 2003, 23(4): 309–312.

    WU X T, HU S S, ZHANG F R. Application of two-point strain measurement to the SHPB technique [J]. Explosion and Shock Waves, 2003, 23(4): 309–312.
    [16] LUNDBERG B, HENCHOZ A. Analysis of elastic waves from two-point strain measurement [J]. Experimental Mechanics, 1977, 17(6): 213–218. DOI: 10.1007/BF02324491.
    [17] YANAGIHARA N. The new measuring method of impact force [J]. Bulletin of JSME, 1978, 21(157): 1085–1088. DOI: 10.1299/jsme1958.21.1085.
    [18] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 47–50.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 47–50.
    [19] OTHMAN R. Wave separation techniques [M]//OTHMAN R. The Kolsky-Hopkinson Bar Machine: Selected Topics. Cham: Springer, 2018: 183–203. DOI: 10.1007/978-3-319-71919-1_7.
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
  • 加载中
图(11)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  119
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-10-24
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回