[1] |
HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. DOI: 10.1016/j.powtec.2014.08.037.
|
[2] |
薛晓, 乔禹, 王鹏飞, 等. 碳纳米管纤维的动态拉伸力学性能研究 [J]. 实验力学, 2020, 35(5): 811–819. DOI: 10.7520/1001-4888-19-213.XUE X, QIAO Y, WANG P F, et al. Dynamic tensile mechanical properties of carbon nanotube fiber [J]. Journal of Experimental Mechanics, 2020, 35(5): 811–819. DOI: 10.7520/1001-4888-19-213.
|
[3] |
MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. DOI: 10.1016/j.powtec.2021.117081.
|
[4] |
袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
|
[5] |
郑监, 卢芳云. 金属梁在预应力下的冲击响应 [J]. 爆炸与冲击, 2021, 41(3): 031401. DOI: 10.11883/bzycj-2020-0328.ZHENG J, LU F Y. On impact response of a prestressed metal beam [J]. Explosion and Shock Waves, 2021, 41(3): 031401. DOI: 10.11883/bzycj-2020-0328.
|
[6] |
HUH H, LIM J H, PARK S H. High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate [J]. International Journal of Automotive Technology, 2009, 10(2): 195–204. DOI: 10.1007/s12239-009-0023-3.
|
[7] |
FROUSTEY C, LAMBERT M, CHARLES J L, et al. Design of an impact loading machine based on a flywheel device: application to the fatigue resistance of the high rate pre-straining sensitivity of aluminium alloys [J]. Experimental Mechanics, 2007, 47(6): 709–721. DOI: 10.1007/s11340-007-9082-4.
|
[8] |
COLE B N, STURGES J L. The flying wedge: a method for high strain rate tensile testing. Part 2: characteristics of the device [J]. International Journal of Impact Engineering, 2003, 28(8): 891–908. DOI: 10.1016/S0734-743X(03)00003-4.
|
[9] |
PETITEAU J C, OTHMAN R, GUÉGAN P, et al. A drop-bar setup for the compressive testing of rubber-like materials in the intermediate strain rate range [J]. Strain, 2014, 50(6): 555–562. DOI: 10.1111/str.12113.
|
[10] |
PEROGAMVROS N, MITROPOULOS T, LAMPEAS G. Drop tower adaptation for medium strain rate tensile testing [J]. Experimental Mechanics, 2016, 56(3): 419–436. DOI: 10.1007/s11340-015-0112-3.
|
[11] |
WHITTINGTON W R, OPPEDAL A L, FRANCIS D K, et al. A novel intermediate strain rate testing device: the serpentine transmitted bar [J]. International Journal of Impact Engineering, 2015, 81: 1–7. DOI: 10.1016/j.ijimpeng.2015.02.009.
|
[12] |
ZHU D, RAJAN S D, MOBASHER B, et al. Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate [J]. Experimental Mechanics, 2011, 51(8): 1347–1363. DOI: 10.1007/s11340-010-9443-2.
|
[13] |
OTHMAN R, GUÉGAN P, CHALLITA G, et al. A modified servo-hydraulic machine for testing at intermediate strain rates [J]. International Journal of Impact Engineering, 2009, 36(3): 460–467. DOI: 10.1016/j.ijimpeng.2008.06.003.
|
[14] |
LI Z, WANG T, JIANG Y, et al. Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression [J]. Composite Structures, 2018, 187: 429–438. DOI: 10.1016/j.compstruct.2017.12.066.
|
[15] |
ZHOU H, XU P, XIE S C, et al. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs [J]. Composite Structures, 2018, 185: 524–536. DOI: 10.1016/j.compstruct.2017.11.059.
|
[16] |
WANG Z G, LI Z D, XIONG W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet [J]. Composites Part B: Engineering, 2019, 164: 280–286. DOI: 10.1016/j.compositesb.2018.10.077.
|
[17] |
WANG Z G, TIAN H Q, LU Z J, et al. High-speed axial impact of aluminum honeycomb: experiments and simulations [J]. Composites Part B: Engineering, 2014, 56: 1–8. DOI: 10.1016/j.compositesb.2013.07.013.
|
[18] |
SIBEAUD J M, THAMIÉ L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037.
|
[19] |
ZHOU X L, ZHOU H F, LI X Y, et al. Size effects on tensile and compressive strengths in metallic glass nanowires [J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 130–144. DOI: 10.1016/j.jmps.2015.07.018.
|
[20] |
ZHOU Q, MAYER R R. Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing [J]. Journal of Engineering Materials and Technology, 2002, 124(4): 412–420. DOI: 10.1115/1.1491575.
|
[21] |
HOU B, ZHAO H, PATTOFATTO S, et al. Inertia effects on the progressive crushing of aluminium honeycombs under impact loading [J]. International Journal of Solids and Structures, 2012, 49(19/20): 2754–2762. DOI: 10.1016/j.ijsolstr.2012.05.005.
|
[22] |
WANG Z G, LI Z D, XIONG W. Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile [J]. Composites Part B: Engineering, 2019, 167: 63–70. DOI: 10.1016/j.compositesb.2018.11.108.
|
[23] |
WANG D M. Impact behavior and energy absorption of paper honeycomb sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(1): 110–114. DOI: 10.1016/j.ijimpeng.2008.03.002.
|
[24] |
HEIMBS S, SCHMEER S, MIDDENDORF P, et al. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures [J]. Composites Science and Technology, 2007, 67(13): 2827–2837. DOI: 10.1016/j.compscitech.2007.01.027.
|
[25] |
SHAN J F, XU S L, ZHOU L J, et al. Dynamic fracture of aramid paper honeycomb subjected to impact loading [J]. Composite Structures, 2019, 223: 110962. DOI: 10.1016/j.compstruct.2019.110962.
|
[26] |
范成年, 张磊, 单俊芳, 等. 复合纸蜂窝结构的力学性能与吸能特性研究 [J]. 实验力学, 2021, 36(5): 627–637. DOI: 10.7520/1001-4888-21-001.FAN C N, ZHANG L, SHAN J F, et al. The mechanical performance and energy absorption properties of composite paper honeycomb structures [J]. Journal of Experimental Mechanics, 2021, 36(5): 627–637. DOI: 10.7520/1001-4888-21-001.
|
[27] |
徐松林, 单俊芳, 周李姜, 等. 对试样进行中等应变速率压缩的实验装置: CN109781555A [P]. 2019-05-21. 北京: 北京集佳知识产权代理有限公司, 2019.
|
[28] |
RUAN D, LU G, CHEN F L, et al. Compressive behaviour of aluminium foams at low and medium strain rates [J]. Composite Structures, 2002, 57(1): 331–336. DOI: 10.1016/S0263-8223(02)00100-9.
|
[29] |
XU S Q, RUAN D, BEYNON J H, et al. Experimental investigation of the dynamic behavior of aluminum foams [J]. Materials Science Forum, 2010, 654/655/656: 950–953. DOI: 10.4028/www.scientific.net/MSF.654-656.950.
|