椭圆截面弹体侵彻性能的影响因素分析

刘均伟 张先锋 刘闯 王佳敏 熊玮 谈梦婷 肖川

刘均伟, 张先锋, 刘闯, 王佳敏, 熊玮, 谈梦婷, 肖川. 椭圆截面弹体侵彻性能的影响因素分析[J]. 爆炸与冲击, 2023, 43(9): 091409. doi: 10.11883/bzycj-2023-0132
引用本文: 刘均伟, 张先锋, 刘闯, 王佳敏, 熊玮, 谈梦婷, 肖川. 椭圆截面弹体侵彻性能的影响因素分析[J]. 爆炸与冲击, 2023, 43(9): 091409. doi: 10.11883/bzycj-2023-0132
LIU Junwei, ZHANG Xianfeng, LIU Chuang, WANG Jiamin, XIONG Wei, TAN Mengting, XIAO Chuan. Influencing factors of penetration performance of an elliptical cross-section projectile[J]. Explosion And Shock Waves, 2023, 43(9): 091409. doi: 10.11883/bzycj-2023-0132
Citation: LIU Junwei, ZHANG Xianfeng, LIU Chuang, WANG Jiamin, XIONG Wei, TAN Mengting, XIAO Chuan. Influencing factors of penetration performance of an elliptical cross-section projectile[J]. Explosion And Shock Waves, 2023, 43(9): 091409. doi: 10.11883/bzycj-2023-0132

椭圆截面弹体侵彻性能的影响因素分析

doi: 10.11883/bzycj-2023-0132
基金项目: 国家自然科学基金(12141202,12202205)
详细信息
    作者简介:

    刘均伟(1996- ),男,博士研究生,liujunwei@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O385

Influencing factors of penetration performance of an elliptical cross-section projectile

  • 摘要: 为研究截面形状和头部曲径比对椭圆截面弹体侵彻性能的影响,开展了圆锥和椭圆锥压头的静态压痕试验,获得了不同截面压头缓慢贯入材料时的力-位移曲线。随后,基于30 mm弹道炮平台,开展了3种不同椭圆截面弹体在400~800 m/s撞击速度范围内正侵彻2A12厚铝靶试验,获得了靶体的破坏形貌及弹体侵彻深度。基于空腔膨胀模型及阻力函数修正系数,建立了椭圆截面弹体侵彻金属厚靶侵彻动力学模型,结合试验结果验证了模型的有效性,并系统分析了弹体截面形状和头部曲径比对侵彻性能的影响。研究结果表明,与圆锥压头相比,具有相同截面面积的椭圆锥压头贯入材料时阻力更大,当压头的截面长短轴比从1.00增大至2.00时,贯入阻力增大10.1%。当弹体截面面积相当,且各横截面保持长短轴比不变时,椭圆截面弹体的长短轴比越大,其侵彻性能越差;椭圆截面弹体侵彻性能随着截面长短轴比的增大和头部曲径比的减小而降低。
  • 图  1  CC1压头的设计

    Figure  1.  CC1 indenter drawing

    图  2  压头安装方式及现场布局

    Figure  2.  Installation and layout of the indenter

    图  3  压痕试验测量的力-位移曲线

    Figure  3.  Force-distance record in the deep indentation test

    图  4  试验弹体

    Figure  4.  Projectiles used in the test

    图  5  试验靶体

    Figure  5.  Targets used in the test

    图  6  试验示意图和现场布局

    Figure  6.  Layout of penetration test

    图  7  E2-2弹体飞行姿态

    Figure  7.  Flying attitude of the E2-2 projectile

    图  8  试验前后弹体对比

    Figure  8.  Comparison of projectiles before and after tests

    图  9  椭圆截面弹体的头部几何形状示意图

    Figure  9.  Nose geometry diagram of the elliptical cross-section projectile

    图  10  阻力函数修正系数

    Figure  10.  Correction coefficient for resistance function

    图  11  理论模型计算结果与试验结果的对比

    Figure  11.  Comparison of the theoretical model calculation results with test results

    图  12  不同长短轴比下侵彻深度与撞击速度的关系

    Figure  12.  Relationships between penetration depth and impact velocity at different major-to-minor axis length ratios

    图  13  不同长短轴比弹体头部的应力分布特性

    Figure  13.  Stress distribution characteristics of the projectile noses at different major-to-minor axis length ratios

    图  14  头部曲径比和长短轴比对侵彻深度的影响

    Figure  14.  Influence of rCRH and β on penetration depth

    表  1  圆锥和椭圆锥压头的几何参数

    Table  1.   Main geometric parameters of circular and elliptical cross-section conical indenters

    类型横截面轮廓2a/mm2b/mmβ最大横截面面积/mm2长度/mm
    CC1 8.008.001.0050.2760.00
    EC1 9.806.531.5050.2760.00
    EC211.315.662.0050.2760.00
    下载: 导出CSV

    表  2  圆形和椭圆截面弹体的主要结构参数

    Table  2.   Main parameters of circular and elliptical cross-section projectiles

    类型弹体轮廓β最大横截面面积/mm2m/gL/mmrCRH
    C11.0055636043.23.60
    E11.2572036043.23.49
    E21.6155636043.25.64
    下载: 导出CSV

    表  3  弹体侵彻2A12厚铝靶试验结果统计

    Table  3.   Test results of projectiles penetrating 2A12 thick aluminum targets

    编号 类型 着角/(°) 俯仰角/(°) 偏航角/(°) v0/(m·s−1) Pe/mm
    1 C1-1 0.39 0.41 0.08 773.1 252.77
    2 E1-1 1.18 0.38 0.67 810.1 217.18
    3 E2-1 1.49 0.41 1.74 816.2 274.55
    4 C1-2 1.44 0.30 0.86 608.0 175.73
    5 E1-2 0.95 0.26 1.87 604.2 143.93
    6 E2-2 0.43 0.20 1.03 563.8 159.17
    7 E1-3 0.41 0.53 2.79 398.3 72.92
    8 E2-3 0.25 0.39 0 402.2 99.30
    下载: 导出CSV

    表  4  弹体侵彻深度计算结果与试验结果的误差

    Table  4.   Deviation of penetration depth between calculation results and test results

    弹体编号v0/(m·s−1)Pe/mm相对试验结果的误差/%
    试验结果SCE模型本文模型SCE模型本文模型
    C1-1773.1252.77285.98285.9813.1413.14
    E1-1810.1217.18239.32229.0510.195.47
    E2-1816.2274.55319.24289.2416.285.35
    C1-2608.0175.73191.95191.959.239.23
    E1-2604.2143.93150.33144.254.450.22
    E2-2563.8159.17172.56157.418.41−1.11
    E1-3398.372.9279.6176.869.175.40
    E2-3402.299.30100.1792.250.88−7.10
    下载: 导出CSV

    表  5  5种椭圆锥弹体结构的质量参数

    Table  5.   Main parameters of five typical elliptical cone projectiles

    类型弹体轮廓2a/mm2b/mmβm/gL/mm
    EC-123.6023.601.00360144
    EC-226.3821.111.25360144
    EC-328.9019.261.50360144
    EC-431.2217.841.75360144
    EC-533.3616.682.00360144
    下载: 导出CSV

    表  6  5种椭圆截面弹体结构的质量参数

    Table  6.   Main parameters of five typical elliptical cross-section projectiles

    类型弹体轮廓示意图2a/mm2b/mmβrCRHm/gL/mm
    ECS-123.6023.601.003.60360144
    ECS-228.9019.261.505.28360144
    ECS-333.3616.682.006.95360144
    ECS-428.9019.261.503.60360144
    ECS-533.3616.682.003.60360144
    下载: 导出CSV
  • [1] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [2] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [3] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [4] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
    [5] 王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.

    WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
    [6] 田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.

    TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
    [7] 邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式 [J/OL]. 兵工学报, (2022-11-02) [2023-04-10]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.

    DENG X W, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetric shaped projectiles penetrating thin metal targets [J/OL]. Acta Armamentarii, (2022-11-02) [2023-04-10]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.
    [8] DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [9] 刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141, 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.

    LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141, 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.
    [10] LIU J W, ZHANG X F, WEI H Y, et al. Study on the penetration of elliptical cross-section projectiles into concrete targets: theory and experiment [J]. Latin American Journal of Solids and Structures, 2022, 19: 1–23. DOI: 10.1590/1679-78256939.
    [11] LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets [J]. International Journal of Impact Engineering, 2023, 173: 104438. DOI: 10.1016/j.ijimpeng.2022.104438.
    [12] MA X H, ZHANG Q M, ZHANG X W. A model for rigid asymmetric ellipsoidal projectiles penetrating into metal plates [J]. International Journal of Impact Engineering, 2022, 163: 104140. DOI: 10.1016/j.ijimpeng.2021.104140.
    [13] 魏海洋, 张先锋, 熊玮, 等. 椭圆截面弹体斜侵彻金属靶体弹道研究 [J]. 爆炸与冲击, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.

    WEI H Y, ZHANG X F, XIONG W, et al. Oblique penetration of elliptical cross-section projectile into metal target [J]. Explosion and Shock Waves, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
    [14] 谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应 [J]. 爆炸与冲击, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.

    TAN Y S, HUANG F L, PI A G. Structural optimization design and structural response of elliptical-section penetration projectiles [J]. Explosion and Shock Waves, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.
    [15] 刘均伟, 张先锋, 赵瑶瑶, 等. 在椭圆横截面弹体正侵彻下有限厚铝靶的破坏模式及响应特性 [J]. 爆炸与冲击, 2022, 42(12): 123301. DOI: 10.11883/bzycj-2022-0249.

    LIU J W, ZHANG X F, ZHAO Y Y, et al. Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles [J]. Explosion and Shock Waves, 2022, 42(12): 123301. DOI: 10.11883/bzycj-2022-0249.
    [16] BISHOP R F, HILL R, MOTT N F. The theory of indentation and hardness tests [J]. Proceedings of the Physical Society, 1945, 57(3): 147–159. DOI: 10.1088/0959-5309/57/3/301.
    [17] SATAPATHY S, BIESS S. Deep punching PMMA [J]. Experimental Mechanical, 2000, 4: 7–31. DOI: 10.1007/BF02327545.
    [18] TAMAGNA A, RIERA J D. Low speed penetration in solids [J]. Nuclear Engineering and Design, 1998, 179: 125–133. DOI: 10.1016/S0029-5493(97)00272-0.
    [19] WRIGHT S C, HUANG Y, FLECK N A. Deep penetration of polycarbonate by a cylindrical punch [J]. Mechanics of Materials, 1992, 13(4): 277–284. DOI: 10.1016/0167-6636(92)90020-E.
    [20] ROSENBERG Z, KOSITSKI R. Deep indentation and terminal ballistics of polycarbonate [J]. International Journal of Impact Engineering, 2017, 103: 225–230. DOI: 10.1016/j.ijimpeng.2017.01.018.
    [21] ROSENBERG Z, DEKEL E. The penetration of rigid long rods [J]. International Journal of Impact Engineering, 2009, 36(4): 551–564. DOI: 10.1016/j.ijimpeng.2008.06.001.
    [22] ROSENBERG Z, DEKEL E. A comment on “The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods” by T. L. Warren, Int. J. Impact Eng. 2016 [J]. International Journal of Impact Engineering, 2016, 93: 231–233. DOI: 10.1016/j.ijimpeng.2016.02.009.
    [23] FORRESTAL M J, LUK V K, WATTS H A. Penetration of reinforced concrete with ogive-nose penetrators [J]. International Journal of Solids and Structures, 1988, 24(1): 77–87. DOI: 10.1016/0020-7683(88)90100-x.
    [24] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743x(92)90282-x.
    [25] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [26] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [27] FORRESTAL M J, HANCHAK S J. Penetration limit velocity for ogive-nose projectiles and limestone targets [J]. Journal of Applied Mechanics, 2002, 69(6): 853–854. DOI: 10.1115/1.1480820.
    [28] JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction [J]. International Journal of Impact Engineering, 2000, 24(4): 403–415. DOI: 10.1016/S0734-743X(99)00157-8.
    [29] FORRESTAL M J, LUK V K, ROSENBERG Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods [J]. International Journal of Solids and Structures, 1992, 29(14/15): 1729–1736. DOI: 10.1016/0020-7683(92)90166-Q.
    [30] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [31] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [32] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
    [33] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics and Materials, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  130
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-07-04
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回