[1] |
KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
|
[2] |
TAN J Q, ZHAN M, LIU S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates [J]. Materials Science and Engineering: A, 2015, 631: 214–219. DOI: 10.1016/j.msea.2015.02.010.
|
[3] |
BARR A D, RIGBY S E, CLAYTON M. Correction of higher mode Pochhammer-Chree dispersion in experimental blast loading measurements [J]. International Journal of Impact Engineering, 2020, 139: 103526. DOI: 10.1016/j.ijimpeng.2020.103526.
|
[4] |
TYAS A, WATSON A J. An investigation of frequency domain dispersion correction of pressure bar signals [J]. International Journal of Impact Engineering, 2001, 25(1): 87–101. DOI: 10.1016/S0734-743X(00)00025-7.
|
[5] |
ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy [J]. Journal of Alloys and Compounds, 2015, 619: 186–194. DOI: 10.1016/j.jallcom.2014.09.002.
|
[6] |
刘志杰, 朱志武, 谢东海, 等. 基于线性黏弹性模型的冻土动态本构关系 [J]. 西南科技大学学报, 2015, 30(4): 85–88. DOI: 10.3969/j.issn.1671-8755.2015.04.019.LIU Z J, ZHU Z W, XIE D H, et al. Dynamic constitutive relation of frozen soil based on liner viscoelastic model [J]. Journal of Southwest University of Science and Technology, 2015, 30(4): 85–88. DOI: 10.3969/j.issn.1671-8755.2015.04.019.
|
[7] |
杜瑞锋, 裴向军, 贾俊, 等. 多次冲击下砂岩粘弹性损伤本构关系 [J]. 吉林大学学报(工学版), 2021, 51(2): 638–649. DOI: 10.13229/j.cnki.jdxbgxb20191171.DU R F, PEI X J, JIA J, et al. Viscoelastic damage constitutive relation of sandstone under multiple impact load [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 638–649. DOI: 10.13229/j.cnki.jdxbgxb20191171.
|
[8] |
黄锐宇, 于培师, 刘禹, 等. 聚硅氧烷硅胶的黏超弹性力学行为研究 [J]. 力学学报, 2021, 53(1): 184–193. DOI: 10.6052/0459-1879-20-287.HUANG R Y, YU P S, LIU Y, et al. Study on the visco-hyperelastic behavior of polysiloxane rubber [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 184–193. DOI: 10.6052/0459-1879-20-287.
|
[9] |
周忠彬, 陈鹏万, 丁雁生. PBX代用材料非线性粘弹性本构模型研究 [J]. 兵器装备工程学报, 2021, 42(6): 276–281. DOI: 10.11809/bqzbgcxb2021.06.047.ZHOU Z B, CHEN P W, DING Y S. Study on nonlinear viscoelastic constitutive model of polymer-bonded explosive mock materials [J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 276–281. DOI: 10.11809/bqzbgcxb2021.06.047.
|
[10] |
雷经发, 许孟, 刘涛, 等. 聚氯乙烯弹性体静动态力学性能及本构模型 [J]. 爆炸与冲击, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.LEI J F, XU M, LIU T, et al. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer [J]. Explosion and Shock Waves, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.
|
[11] |
毛勇建, 李玉龙, 史飞飞. 用经典Hopkinson杆测试弹性模量的初步探讨 [J]. 固体力学学报, 2009, 30(2): 170–176. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.02.010.MAO Y J, LI Y L, SHI F F. A discussion on determining Young’s moduli by conventional split Hopkinson bar [J]. Chinese Journal of Solid Mechanics, 2009, 30(2): 170–176. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.02.010.
|
[12] |
YUAN P, MA Q Y, MA D D. Stress uniformity analyses on nonparallel end-surface rock specimen during loading process in SHPB tests [J]. Advances in Civil Engineering, 2018, 2018: 5406931. DOI: 10.1155/2018/5406931.
|
[13] |
YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens [J]. International Journal of Impact Engineering, 2005, 31(2): 129–150. DOI: 10.1016/j.ijimpeng.2003.09.002.
|
[14] |
MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
|
[15] |
HONG L, LI X B, LIU X L, et al. Stress uniformity process of specimens in SHPB test under different loading conditions of rectangular and half-sine input waves [J]. Transactions of Tianjin University, 2008, 14(6): 450–456. DOI: 10.1007/s12209-008-0077-8.
|
[16] |
ZHOU Z L, LI X B, LIU A H, et al. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 697–701. DOI: 10.1016/j.ijrmms.2010.09.006.
|
[17] |
任文科, 李汶峰, 王江波, 等. 整形器对SHPB入射波形影响规律的定量研究 [J]. 北京理工大学学报, 2021, 41(9): 901–910. DOI: 10.15918/j.tbit1001-0645.2021.010.REN W K, LI W F, WANG J B, et al. Quantitative study on influence of pulse shaper on split Hopkinson pressure bar (SHPB) incident waveform [J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 901–910. DOI: 10.15918/j.tbit1001-0645.2021.010.
|
[18] |
高光发. 固体中的应力波导论 [M]. 北京: 科学出版社, 2022: 239–245.GAO G F. Introduction to stress waves in solid [M]. Beijing: Science Press, 2022: 239–245.
|
[19] |
WANG W, YANG J, DENG G Q, et al. Theoretical analysis of stress equilibrium of linear hardening plastic specimen during SHPB tests [J]. Experimental Mechanics, 2023, 63(8): 1353–1369. DOI: 10.1007/s11340-023-00994-3.
|
[20] |
王江波, 丁俊升, 王晓东, 等. 粗骨料粒径对混凝土动态压缩行为的影响研究 [J]. 爆炸与冲击, 2022, 42(2): 023101. DOI: 10.11883/bzycj-2021-0147.WANG J B, DING J S, WANG X D, et al. Effect of coarse aggregate size on the dynamic compression behavior of concrete [J]. Explosion and Shock Waves, 2022, 42(2): 023101. DOI: 10.11883/bzycj-2021-0147.
|