夹心杆系统中一维弹塑性波演化精细分析(Ⅰ):典型加载波的透反射

高光发

高光发. 夹心杆系统中一维弹塑性波演化精细分析(Ⅰ):典型加载波的透反射[J]. 爆炸与冲击, 2024, 44(8): 081441. doi: 10.11883/bzycj-2023-0389
引用本文: 高光发. 夹心杆系统中一维弹塑性波演化精细分析(Ⅰ):典型加载波的透反射[J]. 爆炸与冲击, 2024, 44(8): 081441. doi: 10.11883/bzycj-2023-0389
GAO Guangfa. Meticulous analysis of one-dimensional elastic-plastic wave evolution in sandwich bar system (part Ⅰ): transmitted and reflected waves for typical loading waves[J]. Explosion And Shock Waves, 2024, 44(8): 081441. doi: 10.11883/bzycj-2023-0389
Citation: GAO Guangfa. Meticulous analysis of one-dimensional elastic-plastic wave evolution in sandwich bar system (part Ⅰ): transmitted and reflected waves for typical loading waves[J]. Explosion And Shock Waves, 2024, 44(8): 081441. doi: 10.11883/bzycj-2023-0389

夹心杆系统中一维弹塑性波演化精细分析(Ⅰ):典型加载波的透反射

doi: 10.11883/bzycj-2023-0389
基金项目: 国家自然科学基金(12172179,11772160, 11472008)
详细信息
    作者简介:

    高光发(1980- ), 男, 博士,教授, 博士生导师,gfgao@ustc.edu.cn

  • 中图分类号: O347.4

Meticulous analysis of one-dimensional elastic-plastic wave evolution in sandwich bar system (part Ⅰ): transmitted and reflected waves for typical loading waves

  • 摘要: 准确地剖析反射波与透射波的形成过程与影响机理是SHPB(split Hopkinson pressure bar)精细化试验设计与精准数据处理的核心前提之一。针对夹心杆系统,分析矩形、梯形与半正弦三种典型入射波加载阶段系统中一维弹塑性波的传播与演化,定量研究试件中弹塑性波的传播、两个界面上弹塑性的透反射及其系列透反射波的相互作用影响。结果表明:首先,弹塑性波特别是应力波在弹塑性交界面上的透反射中占主要地位,纯弹性波的透反射与传播反而影响较小;其次,当入射波加载区间有一定的宽度时,杆2中弹性波在两个界面上的多次透反射对反射波造成衰减的同时对透射波进一步强化,这种衰减使得半正弦波对应的反射波峰值并不是在0.5个无量纲时间时,而是有所提前;第三,与传统SHPB分析中弹性波在界面上透反射的初步规律不同,无论是矩形波、梯形波还是半正弦波入射时,试件材料的杨氏模量与密度改变虽然明显影响其弹性波的阻抗比,但对透反射波波形及其峰值强度影响并不明显。研究结果可为SHPB的精细化设计与数据的精准分析提供科学依据。
  • 图  1  准一维夹心杆结构示意图

    Figure  1.  Schematic diagram of the quasi-one-dimensional sandwich bar structure

    图  2  双线性本构关系示意图

    Figure  2.  Schematic diagram of bilinear constitutive relationship

    图  3  三种典型入射压缩脉冲

    Figure  3.  Three typical incident compression pulses

    图  4  杆2直径为8 mm时矩形入射波的反射波峰值

    Figure  4.  Peak value of reflected wave for rectangular incident wave in a bar of diameter 8 mm

    图  5  杆2直径为8 mm时矩形入射波透射波初始峰值

    Figure  5.  Initial peak value of transmitted wave for rectangular incident wave in a bar of diameter 8 mm

    图  6  梯形波时加载阶段的弹塑性转换点

    Figure  6.  Elastic-plastic transition point during the loading stage for trapezoidal incident wave

    图  7  C到达界面1之前的透反射物理平面图

    Figure  7.  Physical plane diagram of transmission before point C reaches interface 1 for trapezoidal incident wave

    图  8  梯形波时反射波峰值仿真值与理论值

    Figure  8.  Simulation calculation and theoretical value of peak value of reflected wave for trapezoidal incident wave

    图  9  梯形波时透射波首个峰值仿真值与理论值

    Figure  9.  Simulation calculation and theoretical value of first peak value of transmitted wave for trapezoidal incident wave

    图  10  入射波及其上面的点D

    Figure  10.  Incident wave and point D

    图  11  6个点透射波后方的无量纲应力

    Figure  11.  Dimensionless stress of transmitted wave at six points after the wave

    图  12  杆2左端无量纲平均应力时程曲线

    Figure  12.  Dimensionless time history curve of average stress at the left end of bar 2

    图  13  反射波弹性段的无量纲时间宽度

    Figure  13.  Dimensionless time width of elastic segment in the reflected wave

    图  14  临近点E的应力波传播等效物理平面图

    Figure  14.  Equivalent physical plane diagram of stress wave propagation near point E

    图  15  半正弦时反射波峰值对应的无量纲时间

    Figure  15.  Dimensionless time corresponding to peak value of reflected wave for half-sine incident wave

    图  16  透射波首次峰值时间与应力理论与仿真对比

    Figure  16.  Comparison of theoretical and simulation results for time of first peak value and stress of transmitted wave for trapezoidal incident wave

    图  17  直径8 mm时不同杆2密度时的反射波

    Figure  17.  Reflected wave for different densities of bar 2 of diameter 8 mm

    图  18  无量纲密度为1/6时入射波中的三个特征点

    Figure  18.  Three characteristic points in incident wave for density of bar 2 equal to 1/6

    图  19  三种入射波对应的反射波波形图

    Figure  19.  Waveform of reflected wave for three kinds of incident waves

    图  20  不同无量纲密度时梯形入射波的反射波

    Figure  20.  Reflected wave for trapezoidal incident wave under different dimensionless densities

    图  21  梯形入射波在不同杆2直径时的反射波峰值的理论结果与仿真结果

    Figure  21.  Theoretical and simulation results of reflected wave peak stress for trapezoidal incident wave at different diameters

    表  1  梯形入射波上的特征点参数与反射波峰值应力

    Table  1.   Parameters of characteristic points on trapezoidal incident wave and peak stress of reflected wave

    杆2直径/
    mm
    C无量
    纲应力
    C无量
    纲时间
    D无量
    纲应力
    D无量
    纲时间
    峰值无量
    纲应力
    4 −0.300 0.060 0.261 0.052 0.934
    6 −0.353 0.071 0.316 0.063 0.852
    8 −0.441 0.088 0.409 0.082 0.736
    10 −0.553 0.111 0.529 0.106 0.599
    12 −0.668 0.134 0.654 0.131 0.431
    下载: 导出CSV
  • [1] LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
    [2] LIU P, HU D A, WU Q K, et al. Sensitivity and uncertainty analysis of interfacial effect in SHPB tests for concrete-like materials [J]. Construction and Building Materials, 2018, 163: 414–427. DOI: 10.1016/j.conbuildmat.2017.12.118.
    [3] KARIEM M A, BEYNON J H, RUAN D. Misalignment effect in the split Hopkinson pressure bar technique [J]. International Journal of Impact Engineering, 2012, 47: 60–70. DOI: 10.1016/j.ijimpeng.2012.03.006.
    [4] NIE H L, MA W F, HE X L, et al. Misalignment tolerance in one-side and symmetric loading Hopkinson pressure bar experiments [J]. Acta Mechanica Solida Sinica, 2022, 35(2): 273–281. DOI: 10.1007/s10338-021-00267-3.
    [5] GUO Y B, GAO G F, JING L, et al. Dynamic properties of mortar in high-strength concrete [J]. International Journal of Impact Engineering, 2022, 165: 104216. DOI: 10.1016/j.ijimpeng.2022.104216.
    [6] PANOWICZ R, JANISZEWSKI J, KOCHANOWSKI K. Effects of sample geometry imperfections on the results of split Hopkinson pressure bar experiments [J]. Experimental Techniques, 2019, 43(4): 397–403. DOI: 10.1007/s40799-018-0293-7.
    [7] BRIZARD D, JACQUELIN E. Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. application to SHPB device [J]. International Journal of Solids and Structures, 2018, 134: 264–271. DOI: 10.1016/j.ijsolstr.2017.11.005.
    [8] YANG H S, LI Y L, ZHOU F H. Propagation of stress pulses in a Rayleigh-Love elastic rod [J]. International Journal of Impact Engineering, 2021, 153: 103854. DOI: 10.1016/j.ijimpeng.2021.103854.
    [9] BRAGOV A M, LOMUNOV A K, LAMZIN D A, et al. Dispersion correction in split-Hopkinson pressure bar: theoretical and experimental analysis [J]. Continuum Mechanics and Thermodynamics, 2022, 34(4): 895–907. DOI: 10.1007/s00161-019-00776-0.
    [10] RIGBY S E, BARR A D, CLAYTON M. A review of Pochhammer-Chree dispersion in the Hopkinson bar [J]. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 2018, 171(1): 3–13. DOI: 10.1680/jencm.16.00027.
    [11] REN L, YU X M, HE Y, et al. Numerical investigation of lateral inertia effect in dynamic impact testing of UHPC using a Split-Hopkinson pressure bar [J]. Construction and Building Materials, 2020, 246: 118483. DOI: 10.1016/j.conbuildmat.2020.118483.
    [12] AL-MALIKY N S. Dimension effect on dynamic stress equilibrium in SHPB tests [J]. International Journal of Materials Physics, 2014, 5(1): 15–26. DOI: 10.13140/RG.2.2.15864.19200.
    [13] PRAKASH G, SINGH NK, GUPTA NK. Flow behaviour of Ti-6Al-4V alloy in a wide range of strain rates and temperatures under tensile, compressive and flexural loads [J]. International Journal of Impact Engineering, 2023, 176: 104549. DOI: 10.1016/j.ijimpeng.2023.104549.
    [14] WU X Q, YIN Q Y, WEI Y P, et al. Effects of imperfect experimental conditions on stress waves in SHPB experiments [J]. Acta Mechanica Sinica, 2015, 31(6): 827–836. DOI: 10.1007/s10409-015-0439-0.
    [15] 高光发. 量纲分析理论与应用 [M]. 北京: 科学出版社, 2021: 434–435.

    GAO G F. Dimensional analysis: theories and applications [M]. Beijing: Science Press, 2021: 434–435.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  63
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-12-04
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2024-08-05

目录

    /

    返回文章
    返回