A study of dynamic compression behavior of carbon nanotubes reinforced concrete based on SHPB test
-
摘要: 为探究碳纳米管增强混凝土在冲击荷载作用下的动态压缩行为,采用
∅ 100 mm大直径分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)对其进行了冲击试验,对比分析了不同冲击速度和碳纳米管掺量条件下混凝土的动态抗压强度、受压形变以及能量耗散特征的演化规律。试验结果表明:碳纳米管增强混凝土的动态强度特性具有显著的加载速率敏感性,动态抗压强度和动态强度增长因子均与冲击速度呈线性正相关的关系,当加载水平相同时,动态抗压强度随碳纳米管掺量的增大呈先上升后略有下降的变化趋势,且与普通混凝土相比增幅可达23.7%。碳纳米管增强混凝土的极限应变与冲击韧度的变化特点相似,均随冲击速度的增大而逐渐提高,具有一定的冲击速度强化效应,但与冲击速度之间并没有表现出明显的线性关系。在同一加载水平下,当碳纳米管掺量为0.30%时,混凝土的冲击韧度达到相对最大,较之普通混凝土提升约10%。掺入适量的碳纳米管能够有效强化混凝土内部结构的整体性和致密性,进而改善混凝土的动态力学性能以及能量耗散特征。-
关键词:
- 混凝土 /
- 碳纳米管 /
- 分离式霍普金森压杆(SHPB) /
- 动态力学特性 /
- 冲击能量耗散
Abstract: In order to investigate the dynamic compression behavior of carbon nanotubes reinforced concrete under impact loading, the impact compression tests were carried out by using a split Hopkinson pressure bar (SHPB) test device with a diameter of 100 mm. The impact velocities in the SHPB tests were about 6.8, 7.8, 8.8, 9.8 and 10.8 m/s, respectively. The contents of carbon nanotubes in concrete (as a percentage of cement mass) were 0% (i.e. ordinary concrete, as a baseline of comparison), 0.10%, 0.20%, 0.30% and 0.40%, respectively. Then, based on the test results, the evolution laws of dynamic compressive strength, compression deformation, and energy dissipation characteristics of concrete under different impact velocities and carbon nanotubes contents were compared and analyzed. The experimental results show that the dynamic strength characteristics of carbon nanotubes reinforced concrete have significant loading rate sensitivity. The dynamic compressive strength and dynamic enhancement factor show linear positive correlations with impact velocity. When the loading level remains the same, the dynamic compressive strength increases first and then decreases slightly with the increase of carbon nanotubes content, and the growth rate can reach 23.7% compared to ordinary concrete. The variation characteristics of ultimate strain and impact toughness of carbon nanotubes reinforced concrete are similar, which gradually increase with the increase of impact velocity, and have a certain impact velocity strengthening effect, but there is no obvious linear relationship with the impact velocity. Toughness is a comprehensive reflection of material strength and deformation. Therefore, at the same loading level, when the content of carbon nanotubes was 0.30%, the impact toughness of concrete achieved a relative maximum, being about 10% higher than that of ordinary concrete. The appropriate addition of carbon nanotubes can effectively enhance the integrity and compactness of the internal structure of concrete, thereby improving its dynamic mechanical properties and energy dissipation performance. -
表 1 水泥的化学组成(质量分数)
Table 1. Chemical composition of cement (mass fraction)
% CaO SiO2 Al2O3 Fe2O3 MgO SO3 其他 60.54 21.74 4.23 4.61 2.88 2.45 3.55 表 2 碳纳米管的主要性能参数
Table 2. Main performance parameters of carbon nanotubes
羧基含量(质量分数)/% 纯度/% 长度/μm 直径/nm 内径/nm 振实密度/(g·cm−3) 比表面积/(m2·g−1) 3.86 >95 0.5~2 5~15 2~5 0.27 >200 表 3 混凝土的配合比
Table 3. Mix proportion of concrete
kg/m3 试样编号 水泥 河砂 碎石 水 减水剂 消泡剂 碳纳米管 PC 340 640 1360 130 1.7 0.2 0 CNRC1 340 640 1360 130 1.7 0.2 0.34 CNRC2 340 640 1360 130 1.7 0.2 0.68 CNRC3 340 640 1360 130 1.7 0.2 1.02 CNRC4 340 640 1360 130 1.7 0.2 1.36 注:PC表示未掺加碳纳米管的普通混凝土,CNRC1表示碳纳米管掺量为0.1%的碳纳米管增强混凝土,其余编号代表的含义以此类推。 表 4 混凝土动态抗压强度与冲击速度的拟合结果
Table 4. Fitting results between concrete’s dynamic compressive strength and impact velocity
拟合参数 PC CNRC1 CNRC2 CNRC3 CNRC4 k 7.11 6.64 7.83 5.06 7.39 b 2.59 6.12 −0.11 27.69 0.83 R2 0.9654 0.9663 0.9968 0.9753 0.9751 表 5 混凝土动态强度增长因子与冲击速度的拟合结果
Table 5. Fitting results between concrete’s dynamic enhancement factor and impact velocity
拟合参数 PC CNRC1 CNRC2 CNRC3 CNRC4 k 0.143 0.131 0.152 0.092 0.156 b 0.067 0.123 −6.026 0.508 0.020 R2 0.9657 0.9717 0.9946 0.9729 0.9783 -
[1] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites [J]. Cement and Concrete Composites, 2010, 32(2): 110–115. DOI: 10.1016/j.cemconcomp.2009.10.007. [2] 党发宁, 李玉涛, 任劼, 等. 混凝土冲击破坏动态力学及能量特性分析 [J]. 爆炸与冲击, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.DANG F N, LI Y T, REN J, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444. [3] LU S, XIA W, BAI E L, et al. Interfacial modification: The dynamic compression properties and enhancement mechanism of concrete added with micro-nano hierarchical carbon-based fiber [J]. Composites Part B: Engineering, 2022, 247: 110340. DOI: 10.1016/j.compositesb.2022.110340. [4] WANG J L, DONG S F, PANG S D, et al. Tailoring anti-impact properties of ultra-high performance concrete by incorporating functionalized carbon nanotubes [J]. Engineering, 2022, 18: 232–245. DOI: 10.1016/j.eng.2021.04.030. [5] 胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系 [J]. 爆炸与冲击, 2002, 22(3): 242–246.HU S S, WANG D R. Dynamic constitutive relation of concrete under impact [J]. Explosion and Shock Waves, 2002, 22(3): 242–246. [6] 徐阳晨, 邢国华, 黄娇, 等. 聚乙烯醇纤维和碳纳米管改性对混凝土力学性能的影响 [J]. 建筑材料学报, 2023, 26(7): 809–815, 822. DOI: 10.3969/j.issn.1007-9629.2023.07.014.XU Y C, XING G H, HUANG J, et al. Effect of PVA fiber and carbon nanotubes modification on mechanical properties of concrete [J]. Journal of Building Materials, 2023, 26(7): 809–815, 822. DOI: 10.3969/j.issn.1007-9629.2023.07.014. [7] 康玉梅, 佟佳欣. 多壁碳纳米管对钢渣混凝土力学及耐久性能的影响 [J]. 中南大学学报(自然科学版), 2023, 54(8): 3070–3078. DOI: 10.11817/j.issn.1672-7207.2023.08.011.KANG Y M, TONG J X. Effect of multi-walled carbon nanotubes on mechanical and durability of steel slag concrete [J]. Journal of Central South University (Science and Technology), 2023, 54(8): 3070–3078. DOI: 10.11817/j.issn.1672-7207.2023.08.011. [8] CARRIÇO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete [J]. Construction and Building Materials, 2018, 164: 121–133. DOI: 10.1016/j.conbuildmat.2017.12.221. [9] XU S L, LIU J T, LI Q H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste [J]. Construction and Building Materials, 2015, 76: 16–23. DOI: 10.1016/j.conbuildmat.2014.11.049. [10] NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials [J]. Applied Surface Science, 2011, 257(6): 1941–1945. DOI: 10.1016/j.apsusc.2010.09.030. [11] COLLINS F, LAMBERT J, DUAN W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures [J]. Cement and Concrete Composites, 2012, 34(2): 201–207. DOI: 10.1016/j.cemconcomp.2011.09.013. [12] ROCHA V V, LUDVIG P, TRINDADE A C C, et al. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites [J]. Construction and Building Materials, 2019, 209: 1–8. DOI: 10.1016/j.conbuildmat.2019.03.003. [13] PARVEEN S, RANA S, FANGUEIRO R, et al. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique [J]. Cement and Concrete Research, 2015, 73: 215–227. DOI: 10.1016/j.cemconres.2015.03.006. [14] LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes [J]. Carbon, 2005, 43(6): 1239–1245. DOI: 10.1016/j.carbon.2004.12.017. [15] GAO F F, TIAN W, WANG Z, et al. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials [J]. Construction and Building Materials, 2020, 260: 120452. DOI: 10.1016/j.conbuildmat.2020.120452. [16] 郑冰淼, 陈嘉琪, 施韬, 等. 多壁碳纳米管增强混凝土的断裂性能 [J]. 硅酸盐学报, 2021, 49(11): 2502–2508. DOI: 10.14062/j.issn.0454-5648.20210054.ZHENG B M, CHEN J Q, SHI T, et al. Fracture properties of multi-walled carbon nanotubes reinforced concrete [J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2502–2508. DOI: 10.14062/j.issn.0454-5648.20210054. [17] 黄山秀, 陈小羊, 张传祥, 等. 不同应变率和碳纳米管掺量下混凝土的力学性质与能量演化特征 [J]. 高压物理学报, 2023, 37(1): 014101. DOI: 10.11858/gywlxb.20220654.HUANG S X, CHEN X Y, ZHANG C X, et al. Mechanical properties and energy evolution characteristics of concrete under different strain rates and content of MWCNTs [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. DOI: 10.11858/gywlxb.20220654. [18] 任韦波, 许金余, 白二雷, 等. 高温后玄武岩纤维增强混凝土的动态力学特性 [J]. 爆炸与冲击, 2015, 35(1): 36–42. DOI: 10.11883/1001-1455(2015)01-0036-07.REN W B, XU J Y, BAI E L, et al. Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures [J]. Explosion and Shock Waves, 2015, 35(1): 36–42. DOI: 10.11883/1001-1455(2015)01-0036-07. [19] 夏伟, 陆松, 许金余, 等. 碳纳米管/碳纤维对混凝土静力特性的影响及微观机理分析 [J]. 化工新型材料, 2022, 50(9): 278–281. DOI: 10.19817/j.cnki.issn1006-3536.2022.09.055.XIA W, LU S, XU J Y, et al. Influence of CNTs/CF on the static characteristics of concrete and analysis of its micro-mechanism [J]. New Chemical Materials, 2022, 50(9): 278–281. DOI: 10.19817/j.cnki.issn1006-3536.2022.09.055. [20] XIA W, LU S, BAI E L, et al. Strengthening and toughening behaviors and dynamic constitutive model of carbon-based hierarchical fiber modified concrete: cross-scale synergistic effects of carbon nanotubes and carbon fiber [J]. Journal of Building Engineering, 2023, 63: 105482. DOI: 10.1016/j.jobe.2022.105482. [21] KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264–1283. DOI: 10.1016/j.conbuildmat.2018.09.187. [22] 吕太洪. 基于SHPB的混凝土及钢筋混凝土冲击压缩力学行为研究 [D]. 合肥: 中国科学技术大学, 2018.LV T H. Studies on the shock compression behaviors of concrete and steel reinforced concrete based on the split Hopkinson pressure bar [D]. Hefei: University of Science and Technology of China, 2018. [23] 方士正, 李炜煜, 杨阳, 等. 静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究 [J]. 振动与冲击, 2023, 42(6): 280–288. DOI: 10.13465/j.cnki.jvs.2023.06.034.FANG S Z, LI W Y, YANG Y, et al. Experimental study on the dynamic mechanical behavior and energy dissipation characteristics of deep rock under coupled impact loading and hydrostatic pre-stress [J]. Journal of Vibration and Shock, 2023, 42(6): 280–288. DOI: 10.13465/j.cnki.jvs.2023.06.034. [24] 王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响 [J]. 实验力学, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.WANG D R, HU S S. Influence of aggregate on the compression properties of concrete under impact [J]. Journal of Experimental Mechanics, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004. [25] 胡金生, 杨秀敏, 周早生, 等. 钢纤维混凝土与聚丙烯纤维混凝土材料冲击荷载下纤维增韧特性试验研究 [J]. 建筑结构学报, 2005, 26(2): 101–105. DOI: 10.14006/j.jzjgxb.2005.02.015.HU J S, YANG X M, ZHOU Z S, et al. Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load [J]. Journal of Building Structures, 2005, 26(2): 101–105. DOI: 10.14006/j.jzjgxb.2005.02.015. 期刊类型引用(11)
1. 黄振贵,范浩伟,陈志华,周可,刘想炎,王浩. 空心弹高速入水机理及特性数值模拟研究. 爆炸与冲击. 2024(01): 117-131 . 本站查看
2. 张亮,胡常莉,吴小安. 超空泡航行体锥段结构对其尾拍运动影响的数值研究. 兵工学报. 2024(03): 828-836 . 百度学术
3. 刘喜燕,袁绪龙,罗凯,祁晓斌. 预置舵角对跨介质航行体入水尾拍运动影响试验. 兵工学报. 2023(06): 1632-1642 . 百度学术
4. 刘喜燕,袁绪龙,罗凯,祁晓斌,鲁娜. 带尾裙跨介质航行体高速斜入水实验研究. 爆炸与冲击. 2023(11): 108-120 . 本站查看
5. 王旭,吕续舰. 双球并联入水空化及运动特性实验研究. 振动与冲击. 2020(15): 221-229 . 百度学术
6. 侯夏伊,胡俊,于勇. 不同空化模型对附着空化的数值模拟与评价. 兵工学报. 2020(S1): 91-96 . 百度学术
7. 黄彪,黄瀚锐,刘涛涛,张孟杰,王国玉. 通气空泡流动特性研究现状及进展. 空气动力学学报. 2020(04): 724-745 . 百度学术
8. 黄海龙,王聪,余德磊,张鹤,卢佳兴. 高速射弹并联入水过程空泡演化特性试验. 哈尔滨工业大学学报. 2020(12): 15-20 . 百度学术
9. 肖海燕,罗松,朱珠,于勇. 高速射弹小角度入水弹道特性研究. 北京理工大学学报. 2019(08): 784-791 . 百度学术
10. 朱珠,罗松,卢丙举,于勇. 旋转射弹高速倾斜入水多相流场与弹道数值模拟. 爆炸与冲击. 2019(11): 69-79 . 本站查看
11. 黄彪,吴钦,王国玉. 非定常空化流动研究现状与进展. 排灌机械工程学报. 2018(01): 1-14 . 百度学术
其他类型引用(6)
-