基于广义波阻抗理论的SHPB试验中弹性压缩阶段试件应力-应变曲线的应力波效应及其影响机理

高光发

高光发. 基于广义波阻抗理论的SHPB试验中弹性压缩阶段试件应力-应变曲线的应力波效应及其影响机理[J]. 爆炸与冲击, 2024, 44(9): 091441. doi: 10.11883/bzycj-2024-0030
引用本文: 高光发. 基于广义波阻抗理论的SHPB试验中弹性压缩阶段试件应力-应变曲线的应力波效应及其影响机理[J]. 爆炸与冲击, 2024, 44(9): 091441. doi: 10.11883/bzycj-2024-0030
GAO Guangfa. Stress wave effects and influencing mechanisms on stress-strain curves in the elastic compression stage of SHPB tests based on generalized wave impedance theory[J]. Explosion And Shock Waves, 2024, 44(9): 091441. doi: 10.11883/bzycj-2024-0030
Citation: GAO Guangfa. Stress wave effects and influencing mechanisms on stress-strain curves in the elastic compression stage of SHPB tests based on generalized wave impedance theory[J]. Explosion And Shock Waves, 2024, 44(9): 091441. doi: 10.11883/bzycj-2024-0030

基于广义波阻抗理论的SHPB试验中弹性压缩阶段试件应力-应变曲线的应力波效应及其影响机理

doi: 10.11883/bzycj-2024-0030
基金项目: 国家自然科学基金( 12172179,U2341244,11772160)
详细信息
    作者简介:

    高光发(1980- ),男,博士,教授,博士生导师,gfgao@ustc.edu.cn

  • 中图分类号: O347.4

Stress wave effects and influencing mechanisms on stress-strain curves in the elastic compression stage of SHPB tests based on generalized wave impedance theory

  • 摘要: 定量研究分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)试验中弹性压缩阶段试件中的应力波效应是解耦准确材料弹性曲线的基础。在满足平面波假设的基础上,基于广义波阻抗理论,对杆与试件面积不匹配时试件弹性压缩阶段应力波演化造成的结构效应开展了定量理论研究,分析了不同情况下弹性阶段内试件唯象工程及实际材料应力-应变曲线的偏差特征与主要因素,并揭示了影响这种偏差的影响规律及其机理。研究表明:对于线性入射加载波,当无量纲时间为0.5的倍数时,即使其他参数改变,试件唯象与材料实际的应力-应变曲线仍对应相等;试件两端的应力差较大时,若应力差的变化趋于稳定,则试件唯象与材料实际的应力-应变曲线差异较小。计算了不同波动区间内试件的最大应力偏离值及其变化趋势和对应的无量纲时间,研究了入射波是双线性组合波时试件的应力-应变曲线。研究表明:双线性波入射时,2个线性区间可以独立分析,无论如何组合线性区间或应力差如何变化,只要试件两端应力差为近似恒定曲线,对应的试件唯象工程应力-应变曲线都是相对准确的。
  • 图  1  杆与试件的接触区间

    Figure  1.  Contact zone between rod and specimen

    图  2  初始时刻单增量波入射对应的物理平面示意图

    Figure  2.  Physical plane diagram corresponding to the initial moment of single incremental wave incidence

    图  3  非线性加载时入射杆中的入射波示意图

    Figure  3.  Schematic diagram of nonlinear incident wave in incident rod

    图  4  线性加载时入射杆中的入射波示意图

    Figure  4.  Schematic diagram of linear loading incident waveform in incident rod

    图  5  理论计算与数值仿真的反射波与透射波应力对比

    Figure  5.  Comparison of theoretical calculation and numerical simulation of reflected and transmitted waves

    图  6  不同波长的线性入射波

    Figure  6.  Incident waves with different wavelengths

    图  7  线性入射波斜率不同时试件的平均应力无量纲时程曲线

    Figure  7.  Dimensionless time history curves of average stress in specimen at different slopes of incident wave

    图  8  线性入射波斜率不同时试件两端的应力差时程曲线

    Figure  8.  Time history curves of stress difference at both ends of specimen at different slopes of incident wave

    图  9  不同线性入射波斜率时试件两端的应力不均匀度时程曲线

    Figure  9.  Time history curve of dimensionless stress difference in specimen at different slopes of incident wave

    图  10  线性入射波斜率不同时试件的应变率时程曲线

    Figure  10.  Time history curves of strain rate in specimen at different slopes of incident wave

    图  11  线性入射波斜率不同时试件的应变时程曲线

    Figure  11.  Time history curves of strain in specimen at different slopes of incident wave

    图  12  入射波上升沿宽度为8 μs时试件与材料的应力-应变曲线

    Figure  12.  Stress-strain curves of specimen and material with incident wave width of 8 μs

    图  13  线性入射波斜率不同时试件的应力-应变曲线

    Figure  13.  Stress-strain curve of specimen under different incident wave slopes

    图  14  截面积比不同时试件与材料的应力-应变曲线

    Figure  14.  Stress-strain curves of specimen and material with different area ratios

    图  15  截面积比不同时试件的应变时程曲线

    Figure  15.  Time history curves of strain in specimen at different area ratios

    图  16  截面积比不同时试件的应变率时程曲线

    Figure  16.  Time history curves of strain rate in specimen at different area ratios

    图  17  截面积比不同时试件两端的应力差时程曲线

    Figure  17.  Time history curves of stress difference at both ends of specimen at different area ratios

    图  18  实际弹性加载曲线示意图

    Figure  18.  Simplified schematic diagram of actual elastic loading curve

    图  19  试件的轴向平均应力和应变时程曲线

    Figure  19.  Time history curves of stress-strain under bilinear incident wave and comparison with single linear

    图  20  双线性入射时试件两端的应力差时程曲线

    Figure  20.  Time history curves of stress difference at both ends of specimen under bilinear incident

    图  21  斜率不同双线性入射时试件的唯象应力-应变曲线

    Figure  21.  Phenomenological stress-strain curves of specimen at different slopes of bilinear incident wave

  • [1] LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
    [2] LIU P, HU D A, WU Q K, et al. Sensitivity and uncertainty analysis of interfacial effect in SHPB tests for concrete-like materials [J]. Construction and Building Materials, 2018, 163: 414–427. DOI: 10.1016/j.conbuildmat.2017.12.118.
    [3] KARIEM M A, BEYNON J H, RUAN D. Misalignment effect in the split Hopkinson pressure bar technique [J]. International Journal of Impact Engineering, 2012, 47: 60–70. DOI: 10.1016/j.ijimpeng.2012.03.006.
    [4] NIE H L, MA W F, HE X L, et al. Misalignment tolerance in one-side and symmetric loading Hopkinson pressure bar experiments [J]. Acta Mechanica Solida Sinica, 2022, 35(2): 273–281. DOI: 10.1007/s10338-021-00267-3.
    [5] GUO Y B, GAO G F, JING L, et al. Dynamic properties of mortar in high-strength concrete [J]. International Journal of Impact Engineering, 2022, 165: 104216. DOI: 10.1016/j.ijimpeng.2022.104216.
    [6] PANOWICZ R, JANISZEWSKI J, KOCHANOWSKI K. Effects of sample geometry imperfections on the results of split Hopkinson pressure bar experiments [J]. Experimental Techniques, 2019, 43(4): 397–403. DOI: 10.1007/s40799-018-0293-7.
    [7] BRIZARD D, JACQUELIN E. Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars: application to SHPB device [J]. International Journal of Solids and Structures, 2018, 134: 264–271. DOI: 10.1016/j.ijsolstr.2017.11.005.
    [8] YANG H S, LI Y L, ZHOU F H. Propagation of stress pulses in a Rayleigh-Love elastic rod [J]. International Journal of Impact Engineering, 2021, 153: 103854. DOI: 10.1016/j.ijimpeng.2021.103854.
    [9] BRAGOV A M, LOMUNOV A K, LAMZIN D A, et al. Dispersion correction in split-Hopkinson pressure bar: theoretical and experimental analysis [J]. Continuum Mechanics and Thermodynamics, 2022, 34(4): 895–907. DOI: 10.1007/s00161-019-00776-0.
    [10] RIGBY S E, BARR A D, CLAYTON M. A review of Pochhammer-Chree dispersion in the Hopkinson bar [J]. Engineering and Computational Mechanics, 2018, 171(1): 3–13. DOI: 10.1680/jencm.16.00027.
    [11] REN L, YU X M, HE Y, et al. Numerical investigation of lateral inertia effect in dynamic impact testing of UHPC using a split-Hopkinson pressure bar [J]. Construction and Building Materials, 2020, 246: 118483. DOI: 10.1016/j.conbuildmat.2020.118483.
    [12] ROTARIU A N, TRANĂ E, MATACHE L. Young’s modulus calculus using split Hopkinson bar tests on long and thin material samples [J]. Materials, 2022, 15(9): 3058. DOI: 10.3390/ma15093058.
    [13] AGHAYAN S, BIELER S, WEINBERG K. Determination of the high-strain rate elastic modulus of printing resins using two different split Hopkinson pressure bars [J]. Mechanics of Time-Dependent Materials, 2022, 26(4): 761–773. DOI: 10.1007/s11043-021-09511-2.
    [14] ZHANG Q M, HUANG X M, GUO R, et al. Study on dynamic impact response and optimal constitutive model of Al-Mg-Si aluminum alloy [J]. Materials, 2022, 15(21): 7618. DOI: 10.3390/ma15217618.
    [15] CHEN J P, TAO W J, HUAN S, et al. Data processing of wave propagation in viscoelastic split Hopkinson pressure bar [J]. AIP Advances, 2022, 12(4): 045210. DOI: 10.1063/5.0083888.
    [16] ZHOU Z P, GAO D D, LIN G J, et al. Static and dynamic mechanical properties of epoxy nanocomposites reinforced by hybridization with carbon nanofibers and block ionomers [J]. Engineering Fracture Mechanics, 2022, 271: 108638. DOI: 10.1016/j.engfracmech.2022.108638.
    [17] PRAKASH G, SINGH N K, GUPTA N K. Flow behaviour of Ti-6Al-4V alloy in a wide range of strain rates and temperatures under tensile, compressive and flexural loads [J]. International Journal of Impact Engineering, 2023, 176: 104549. DOI: 10.1016/j.ijimpeng.2023.104549.
  • 加载中
图(21)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  58
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-06-20
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-09-20

目录

    /

    返回文章
    返回