Review on dynamic mechanical analysis and design of graded cellular materials
-
摘要: 多胞材料是一种内部含有大量空穴和胞元的结构,具有轻质、高比吸能等特性,广泛应用于航空航天、交通运输和人体防护等碰撞/爆炸防护领域。引入梯度设计可实现多胞材料的有序耗能和载荷调控,满足不同情形和工况下的防护需求。对梯度多胞材料动态力学行为和设计的研究进展进行了综述,着重介绍了梯度多胞材料/结构在抗冲击、抗爆炸和模拟爆炸载荷加载3个方面的应用案例。首先,介绍了梯度多胞材料的分类,较系统地总结了梯度多胞材料在动态加载下的变形特征、冲击波模型、防护性能等方面的研究,阐明了梯度多胞材料的密度/强度梯度与惯性效应存在的竞争机制。其次,以冲击波模型为力学原理指导梯度多胞材料/结构设计,介绍了梯度多胞材料耐撞性反向设计、多种抗爆炸夹芯结构设计、计及弹靶耦合效应的爆炸载荷模拟器设计等策略,实现了最佳防护效果或载荷精准控制,为抗冲击/抗爆炸防护设计和快速评估提供理论基础和技术支撑。最后,展望了梯度多胞材料在极端环境加载、大能量冲击和强非线性载荷调控等需求下冲击防护领域的应用前景。Abstract: Cellular materials are structures with a large number of internal cavities and cells, which have the properties of lightweight and high specific energy absorption, and they are widely used in the collision/explosion protection, such as aerospace, transportation, and human protection. Introducing a gradient design to cellular materials helps the materials to meet the protection requirements in different scenarios and conditions with the properties of orderly dissipation of energy and manipulation of loads. A review of research advances in the dynamic analysis and design on mechanical behavior of graded cellular materials is presented. Three cases of the applications of graded cellular materials/structures, i.e., impact resistance, blast resistance, and blast-mimicking loading, are elaborated. Firstly, graded cellular materials are briefly described from various aspects, such as natural vs. artificial, layered vs. continuous, strength gradient vs. density gradient, and conventional manufacturing vs. additive manufacturing. The studies of the deformation characteristics, shock wave models, and protective properties of graded cellular materials under dynamic loading are then reviewed systematically. A competitive mechanism of density/strength gradients and inertial effects exists in graded cellular materials to synergistically modulate collapse deformation modes. According to the stress-strain curve characteristics of cellular materials, choosing the appropriate constitutive model could increase the characterization accuracy for its dynamic mechanical behavior. Secondly, the shock wave models are used as a mechanical tool to guide the design of graded cellular materials/structures. Some strategies are elaborated, such as the backward design of graded cellular materials for impact resistance, the design of several types of anti-blast sandwich structures, and the design of blast-load simulators with the projectile-beam coupling effect being taken into account. The optimal protection effect or precise load control had been realized efficiently, which provides a theoretical basis and technical support for the protection design and rapid evaluation of impact/explosion resistance structures. Finally, for the applications in the scenarios of extreme environmental loading, large energy impacts, and strong nonlinear load manipulation, the investigations of graded cellular materials are full of challenges and expectation.
-
随着碰撞、冲击或爆炸载荷对航空航天器、船舶、军用车辆和人体的威胁日益加剧,对防护结构的抗冲击/抗爆炸性能要求越来越高,设计优异吸能器的需求也日益强烈。不同领域中已发展出各具特色的优异吸能器。例如:保险杠和吸能盒可有效地吸收车辆碰撞中的冲击能量,增强汽车抗冲击安全性;特性材料阻拦系统(engineered material arresting system,EMAS)可有效地拦阻飞机滑出跑道,增强飞机抗冲击安全性[1-2];泡沫金属夹芯板隔爆装置可以增强弹药的抗殉爆能力[3];夹芯结构可有效地增强装甲车底盘防护地雷的能力[4-5]。综上所述,在各类冲击/爆炸问题中,引入合适的能量吸收结构,可以有效地耗散冲击能量,提高结构的防护能力。
自然界中存在一些具有优异吸能能力的生物结构,如软木[6]、竹子[7]和柚皮[8]等,其内部含有大量空穴,所形成的多胞材料具有高比强度、隔振消声、缓冲吸能等诸多优势。受此启发,泡沫、蜂窝、点阵结构等多胞材料在航空航天、铁路交通、汽车以及兵器工业等领域有着广泛的应用前景[9-15]。在准静态压缩下,多胞材料具有低屈服应力和长而稳定的平台段的力学特征,可实现以稳定且低的载荷形式吸收能量。而在动态冲击下,多胞材料通常表现出变形局部化和应力增强特征[6, 16-18],即冲击端载荷随冲击速度升高而增强,而支撑端应力依旧维持平台应力。这些特征说明,面对任何外界载荷冲击,只要保持足够的行程,就可一直以低平台应力吸能来保护后方相对静止的物体,提高结构的防护性能[6, 16, 19-20]。可见,面对相对静止的被保护结构,多胞材料可“过滤”外界强烈的冲击载荷,延缓载荷作用时间,起到很好的防护效果。因此,多胞材料在静/动态加载下表现出优异的能量吸收能力,具有冲击防护和载荷调控的潜能。
自然界中的大多数多胞结构并非均匀结构,而是呈现某种功能性梯度变化。例如,王莲叶片独特的多网格状纹理结构呈现面内梯度变化[21],可以提高结构的承载能力;马蹄的壁管状结构由内到外呈现密度梯度变化[22-23],可以很好地抵御奔跑中马蹄受到的冲击;柚子皮孔隙率由内至外逐渐减小[8],可以缓冲吸收柚子从高处落地时的动能。自然界中的多胞结构[6, 24-27]根据周围环境经历了适应性进化,给出了非常合适的胞元结构形态,在结构和功能上得到了优化,达到了节约材料和降低能耗的效果,以满足自然经济的需求[28-31],为优异防护结构设计提供了先进模板。这意味着梯度多胞材料在动态吸能方面可能具有更大的潜力。
本文中,主要围绕梯度多胞材料及其动态力学性能分析进行综述,较系统地总结在动态加载下梯度多胞材料的变形特征、冲击波理论模型和防护性能等方面的研究进展,着重介绍梯度多胞材料在冲击及爆炸防护等领域的设计案例,并对其在冲击防护领域的应用前景进行展望。
1. 梯度多胞材料
1.1 自然与人工梯度多胞材料
自然界中存在的多胞材料大多呈现出某种功能性的梯度变化,如图1所示。这些生物组织倾向于针对其所承受的负载条件进行自我优化。它们的几何形状随载荷条件的变化而变化,以适应应力或应变相关的要求,其材料特性也得到了最佳分配。例如:骨骼的内部细观结构根据主应力方向和剪切应力的大小而变化,以提高抗骨折能力[32];竹子茎剖面细观结构中的胞元尺寸、形状和基体材料强度呈现由内到外的梯度分布,从而实现竹子外强中柔的力学表现[7, 33-37];棕榈树等纤维分布沿径向表现为外高内低的梯度变化,显著提高了植物单位质量的抗弯刚度[36-38];云杉的茎在生长环内从早材到晚材的孔隙率逐渐降低[39-40];蜡菊苞片铰链处的细胞壁所占组织比例、细胞壁厚度、致密度和纤维素微纤维取向从近轴到远轴呈现出梯度变化,从而实现对苞片运动的调节[41];鸟类羽毛中的梯度泡沫填充轴可以为其提供轻质、坚固的机械强度以及梯度阻尼特性[42];海星骨架中存在的梯度微晶格结构为其提供了多种增强增韧策略,包括晶体共向、晶格几何梯度和通过微晶格位错抑制解理断裂[43]。众多具有优异力学性能的生物结构为轻质防护结构设计提供了大量的模板,有利于构造多元化的轻质防护结构数据库。自然环境中大多数生物结构主要抵抗的是静载或低速冲击载荷,缺乏长期适应高速冲击的情形,因而单纯的仿生设计在高速冲击下不一定有效。
通过模仿自然界中各类多胞结构的胞元几何构型,并利用已有的基体材料,人们制备了种类众多的人造多胞材料,如泡沫铝和蜂窝。对于多胞材料的分类依据有很多。根据细观胞元的形态可以分为开孔、半开孔和闭孔多胞材料。根据细观胞元的排列方式可以分为:所有的胞元在同一个方向(面外方向)上平行放置的二维多胞材料,如规则/随机的六角、圆孔蜂窝;在整个空间内胞元与胞元之间通过共享胞棱或胞壁组合在一起的三维多胞材料,如泡沫、点阵和格栅材料。根据胞元连通性的规律度[44]分为泡沫(胞元的随机连通性)和晶格(规则/周期性的连通性)[45]。种类丰富的多胞材料为满足不同耐撞性和功能性要求提供了更多选择。基于多胞材料,通过调节胞元壁厚、胞元大小、横截面面积等特征参数实现力学性能梯度化,从而生成梯度多胞材料。受益于增材制造等制备工艺的快速发展,细观结构更复杂的功能性梯度多胞材料得以实现,如梯度闭孔泡沫[46-47]、梯度开孔泡沫[48]、梯度六边形蜂窝结构[49-52]、梯度圆管蜂窝结构[53-54]、梯度点阵结构[55-56]、梯度TPMS(triply periodic minimal surface)结构[57-62]等,如图2所示。
1.2 分层与连续梯度多胞材料
梯度多胞材料根据梯度分布的连续性可以分为分层梯度设计和连续梯度设计,如图3所示。分层梯度设计即梯度多胞材料存在非连续的密度变化。由于受到传统制备工艺的限制,分层梯度设计是制备梯度多胞材料的主要方式。例如,将不同相对密度的泡沫铝或聚氨酯泡沫分层拼接,可设计出非连续的密度梯度多胞材料[63-66]。基于数值建模的方法,通过改变特定分层的胞元尺寸和壁厚,可设计出多样的分层梯度多胞结构,如分层梯度六边形蜂窝[49-50]、分层梯度圆管蜂窝[53]、分层梯度圆弧蜂窝[67]、分层变壁厚的球壳泡沫[68]和分层梯度Voronoi多胞材料[69-70]等。分层梯度材料的力学行为往往可以通过各层的力学参数推导得到[71]。然而,当相邻层间密度差较大时,分层梯度多胞材料存在突变的波阻抗[72-73],在界面处可能会出现显著的透反射现象以及明显的阶梯状力学表现[74]。
连续梯度设计使得梯度多胞材料中不同位置的波阻抗平滑过渡,是一种较理想的梯度方式[75-78]。Yang等[75]和Wang等[79]通过变胞元尺寸法来调控密度分布,建立了密度连续变化且壁厚均一的梯度Voronoi蜂窝和梯度Voronoi闭孔泡沫的细观有限元模型。该变胞元尺寸法的撒点规则为,在一定区域内随机撒点,通过已知的相对密度分布和壁厚,控制任意2个相邻成核点i与j之间的间距(
δij )不小于当前位置的最小许可间距(δmin ),记为:δij≥δmin (1) 式中:h为胞元胞壁厚度;k为胞元不规则度;ρij为i和j两核点连线中点位置对应的相对密度;λ取值与对应的规则的细观构型有关,对于规则六角蜂窝,λ = 2;对于正十四面体结构,
\lambda = 3(6 + \sqrt 3 )/8 \approx 2.90 。Zheng等[80]将连续变胞元尺寸法进行了拓展应用,生成了先增后减和先减后增等非单调的连续密度梯度Voronoi蜂窝。Shen等[81-82]和Zhang等[83]建立了连续变截面面积的泡沫金属和金属蜂窝以及连续变壁厚的六角蜂窝试件。
1.3 强度与密度梯度多胞材料
梯度多胞材料的设计可以通过改变密度或改变基体材料的强度实现。Gibson等[27]通过总结大量的文献数据,给出了多胞材料屈服应力的经验公式,表明多胞材料的屈服应力与材料密度和基体材料的屈服强度呈正相关关系。因此,在多胞材料中引入基体材料强度梯度是设计梯度多胞材料的途径之一。Shen等[85]通过赋予胞元胞壁不同的屈服应力,构建了目标强度梯度的圆环和六角蜂窝多胞杆,如图4(a)所示。然而,该强度梯度多胞杆仅能依赖有限元方法实现并开展相关研究,而在实际应用中,为多胞材料的胞壁材料赋予强度梯度难度较大,因此,在防护结构优化设计和波传播规律研究中,更多采用密度梯度多胞材料。
密度梯度多胞材料主要通过调控胞元尺寸和壁厚等几何参数来实现,如图4(b)所示。基于变胞元尺寸法[75, 79]构建的梯度蜂窝和闭孔泡沫,Duan等[86-88]构建了变胞元尺寸和变壁厚的梯度Voronoi泡沫结构,Bai等[56, 89]设计了胞元尺寸梯度和壁厚梯度以及垂直梯度和水平梯度的梯度点阵结构。此外,通过调整面内方向的胞元尺寸和壁厚,还可以设计梯度折纸蜂窝[90]、梯度圆管蜂窝[54]、梯度球壳晶格结构[60]、梯度TPMS晶格结构[57-59]和双向梯度晶格结构[46, 91]等。对于蜂窝结构,除了面内方向的梯度壁厚,面外方向的壁厚变化同样可以实现梯度设计。Jefferson等[52]通过引入面外方向的双线性变化对蜂窝壁厚进行了优化设计。Zamani等[92]设计了在面外方向呈壁厚和角度梯度的蜂窝结构。王海任等[93]基于王莲结构设计了面内梯度蜂窝芯层和面内面外双向梯度仿生夹芯圆板。此外,在传统多胞材料中引入嵌套结构,同样可以设计出梯度多胞材料,如自相似分形梯度蜂窝[94]、微型陶瓷球填充的六角蜂窝结构[51]等。
1.4 传统与增材制造梯度多胞材料
梯度多胞材料的传统制备工艺有很多。通过堆砌不同壁厚空心球[96]、化学溶解均质开孔泡沫铝[97]、可溶性空间保持器[98-99]和控制熔融发泡时间[100-102]等方式制备密度在空间上连续变化的梯度多胞材料。He等[100-101]、Zhang等[102]研究了在铝水中加入发泡剂TiH2,控制水冷前发泡时间制备连续梯度变化的闭孔泡沫铝技术,通过控制TiH2含量、保温时间和冷却水的喷涂强度,可以较精准地实现原设计密度梯度分布,如图5所示。该研究为精准制备梯度多胞材料提供了一种可能,或可为未来工业化批量制备低成本高精度的梯度泡沫铝材料提供重要的技术支撑。
增材制造技术的出现或许可以弥补梯度多胞材料的传统制造方式的不足。学者们尝试利用增材制造技术打印各种微观结构的均质或梯度多胞材料(见图6),并研究了其力学行为。例如,3D打印的变壁厚拱形聚合物泡沫[103]、胞元尺寸梯度Gyroid[62]、变胞元尺寸的丙烯腈-丁二烯-苯乙烯(acrylonitrile butadiene styrene,ABS)梯度Voronoi泡沫[77]和厚度梯度板状晶格结构[104]。Yu等[105]采用立体光刻技术制备了均质和渐变密度的Schwarz primitive和Gyroid等2种TPMS结构,并研究了其在准静态压缩下的力学行为。Bi等[106]利用光固化技术制备了基于镶嵌拓扑生成的开孔泡沫,研究了其脆性材料行为和断裂强度。Maskery等[107]采用激光烧结技术制备渐变密度的Al-Si10-Mg晶格结构,研究了其在准静态下的晶格脆性塌陷和不理想变形行为。Xiao等[108]采用选择性激光烧结技术(selective laser sintering,SLM)制备了分层梯度和连续梯度的Ti-6Al-4V晶格结构,并研究了其准静态和动态力学行为,发现密度梯度形式对力学行为没有影响。Duan等[87-88]采用Voronoi模型构造了聚乳酸(polylactic acid,PLA)泡沫试样,采用熔融层积法制备了不同密度梯度的梯度泡沫和不同相对密度的均匀泡沫,并研究了其准静态和动态力学行为。增材制造技术可以很好地实现梯度多胞材料的密度梯度的精准性、胞元尺寸形状的可设计性和相同密度分布试件的可重复性。3D打印技术为梯度多胞材料的精准生产加工提供了一条理想途径,使得梯度多胞材料的设计和制备成为可能。
2. 梯度多胞材料的动态力学性能分析
2.1 变形模式
已有众多学者研究了不同密度或强度分布的梯度多胞材料的动静态力学性能,探讨了线性/非线性、单调递增/减、先增后减以及先减后增等梯度分布形式的影响,见图7~8。例如,郑志军课题组构建了连续变胞元尺寸的密度梯度变化的Voronoi蜂窝[79],开展了质量块冲击[95]、爆炸加载[109-113]、恒速压缩[114]等情形下的数值模拟研究,探讨了冲击速度和线性密度梯度斜率(梯度参数γ)对梯度Voronoi蜂窝变形模式的影响规律,并给出了准静态模式、过渡模式和动态模式的分区图[114-115],如图7所示。结果表明,低速加载下,胞元压溃变形带总是先从低密度端开始并逐渐向高密度端移动,并与正负梯度(γ ≠ 0)无关;而在高速冲击下,压溃带总是从冲击端先开始,其中正梯度分布时压溃先从冲击端开始并向支撑端传播,即单压溃波变形模式,而负梯度分布时,冲击端和支撑端均出现压溃带,出现双压溃波变形模式,如图8(a)~(b)所示。文献[69, 116]也发现了类似的现象。因此,梯度多胞材料的变形模式不仅与密度梯度分布有关,还与加载速度相关。卢国兴及其合作者[83, 90, 117-119]研究了强度梯度蜂窝[85]、密度梯度蜂窝、截面梯度泡沫铝[81]等结构的力学响应,给出了各种梯度多胞材料在动态加载下的变形过程,发现了单压溃波和双压溃波的变形模式。Zheng等[80]通过观察中间弱的密度梯度多胞材料的变形,发现了3个压溃波共存的变形特征,如图8(c)所示。
梯度多胞材料的静/动态压缩数值模拟和实验测试结果表明,随着密度/强度梯度分布的改变,试件内部存在单波、双波甚至多压溃波传播特征。在准静态压缩下,梯度多胞材料总是由弱的区域开始压溃,如图7(a)所示。对于单调梯度分布的试件,压溃带总是由强度弱的一端向强的一端传播,即单波变形模式;而对于非单调梯度分布的试件,如先增后减或先减后增的试件,压溃带则相继从多处弱区域发生,逐步发展成多个压溃波的变形模式(可能是中间压溃波向两端传播)。由此可见,在准静态加载下,材料的变形模式主要由密度/强度梯度主导。在爆炸、冲击、碰撞等动态加载下,由于惯性效应,载荷主要从加载端向静止端传递,具有明显的方向性。对于均匀的多胞材料而言,压溃变形主要与载荷传递方向一致,发生单波变形模式。其中,当载荷传递至静止端时出现的局部压溃是由于应力波在固支端反射出现应力增强导致的。然而,对于梯度多胞材料而言,由于密度/强度梯度的引入,惯性效应主导的单波变形模式会被干扰,存在密度/强度梯度与惯性效应竞争机制。因此,对于梯度多胞材料的变形模式,存在惯性效应和密度/强度梯度协同作用机制。
2.2 冲击波模型
了解多胞材料的准静态和动态力学行为及表征模型,有助于梯度多胞材料力学性能的分析。Reid等[6, 120]首次提出了结构冲击波的概念,基于连续介质理论,进一步提出了一维速率无关的刚性-理想塑性-锁定(rigid-plastic-perfectly-locking, R-PP-L)塑性冲击波模型,用来描述均匀多胞材料(木材)动态压溃过程中波阵面前后应力、应变的强间断特征和关系。为简单起见,他们采用R-PP-L理想化模型作为多胞材料的本构模型。然而,R-PP-L材料模型仅仅实现了对多胞材料应力-应变(
\sigma -\varepsilon )关系的一阶近似。多胞材料的应力-应变关系的平台段并非完全水平,存在非线性应变硬化现象,压实区呈现递增塑性强化而非压实应变保持恒定。随后,学者们提出了一系列更加准确的多胞材料的理想化模型,如刚性-软化-硬化(rigid-softening-hardening, R-S-H)理想化模型[121]、刚性-线性硬化-锁定(rigid-linear hardening plastic-locking, R-LHP-L)理想化模型[122]、刚性-幂律塑性硬化(rigid-power-law plastic hardening, R-PLPH)理想化模型[123-124]、考虑了弹性段的弹性-理想塑性-刚性(elastic-perfectly-plastic-rigid, E-PP-R)[125-126]、弹性-塑性-刚性(elastic-plastic-rigid, E-P-R)[127]和弹性-理想塑性-硬化(elastic-perfectly-plastic-hardening, E-PP-H)[128]理想化模型。以往的材料模型多为分段形式,难以给出一个连续且简单的材料模型,且多胞材料准静态与动态的应力-应变关系也不一致,存在明显的加载率敏感性。Zheng等[19]提出了率无关、刚性-塑性硬化(R-PH)材料模型以及率相关、刚性-塑性硬化(D-R-PH)材料模型,分别用于描述准静态和动态下多胞材料的力学响应,其中R-PH和D-R-PH材料模型的关系式分别表示为:\sigma (\varepsilon ) = {\sigma _0} + \frac{{C\varepsilon }}{{{{(1 - \varepsilon )}^2}}} (2) \sigma (\varepsilon ) = \sigma _0^{\text{d}} + \frac{{D\varepsilon }}{{{{(1 - \varepsilon )}^2}}} (3) 式中:σ0和C分别为多胞材料的准静态初始压溃应力和准静态应变强化参数,
\sigma _0^{\text{d}} 和D分别为多胞材料的动态初始压溃应力和动态应变强化参数。R-PH和D-R-PH材料模型的数学表达式的形式一致,但材料参数(即初始压溃应力和应变强化参数)的取值不同。前者的材料参数通过准静态压缩的应力-应变曲线拟合获得,而后者的材料参数由动态测试的数据获得[77, 129]。研究表明,对于表征多胞材料的动态力学行为,R-PH材料模型优于R-PP-L材料模型[130],而D-R-PH材料模型最优[131]。基于冲击波波速和粒子速度的线性关系,可以推导出类似的应力-应变关系:\sigma (\varepsilon ) = \sigma _0^{{\text{qs}}} + \rho _0^*\varepsilon {\left( {\frac{{{v_{\text{r}}}}}{{1 - S\varepsilon }}} \right)^2} = \sigma _0^{{\text{qs}}} + \frac{{B\varepsilon }}{{{{({\varepsilon _{\text{m}}} - \varepsilon )}^2}}} (4) 式中:
\rho _0^* 为多胞材料的初始密度,εm= 1/S为多胞材料的最大压实应变,vr为参考速度,B =\rho _0^* (εmvr)2。对于开孔泡沫,εm略大于1[132-134];而对于二维闭孔泡沫,εm略小于1[20]。随后,Wang等[135]进一步提出了一种基于细观统计模型的单轴压缩本构模型:
\sigma (\varepsilon ) = \left( {E\varepsilon - {\sigma _{{\text{pl}}}}} \right){\rm{e} ^{ - {{\left( {\varepsilon /\lambda } \right)}^k}}} + {\sigma _{{\text{pl}}}} + \frac{{C\varepsilon }}{{{{\left( {{\varepsilon _{\text{m}}} - \varepsilon } \right)}^2}}} (5) 式中:E为杨氏模量,σpl为平台应力,k为与韦伯分布相关的形状参数,λ为比例参数。
该模型可以表征初始屈服阶段的应力降现象,并可以更加精准地表征多胞材料的力学行为。该本构方程由3部分组成:第1部分为由杨氏模量E、平台应力σpl、与韦伯分布相关的形状参数k和比例参数λ共同决定的初始压溃段,第2部分为特征胞元的承载能力σpl(即平台应力σpl)决定的平台应力段,第3部分为由准静态应变硬化参数C和最大压实应变εm决定的硬化段。在实际应用中,可以根据多胞材料的应力-应变曲线特征,选择合适的本构关系模型进行表征。例如,应力-应变曲线无明显渐进硬化阶段的脆性泡沫、面内压缩的蜂窝等多胞材料可选用R-PP-L模型进行表征,而具有明显渐进硬化阶段的闭孔泡沫材料等材料可选择更精准的R-PH等材料模型(式(2)和(4))进行表征,具有明显应力降特征的材料可选择细观统计本构模型(式(5))进行表征。
在动态冲击下,梯度多胞材料的变形特征与均匀多胞材料类似,以逐层压溃的模式发生变形,具有明显的应力增强和变形局部化特征[6, 16-18]。根据准静态压缩下多胞材料的应力-应变曲线特征选择合适的本构关系,并结合应力波理论,建立梯度多胞材料的塑性冲击波模型,以表征其动态力学行为。由应力波理论,跨过冲击波阵面的质量守恒和动量守恒为:
\left\{ \begin{gathered} v(t) - 0 = \dot \varPhi (t)\left( {{\varepsilon _{\text{B}}}(\rho (\varPhi )) - 0} \right) \\ {\sigma _{\text{B}}}(t) - {\sigma _0}(\rho (\varPhi )) = {\rho _{\text{s}}}\rho \dot \varPhi (t)\left( {v(t) - 0} \right) \\ \end{gathered} \right. (6) 式中:ρs为胞壁材料密度,ρ为梯度多胞材料的相对密度分布,Ф(t)为t时刻波阵面的位置,
\dot \varPhi (t) 为冲击波波速。波阵面紧后方的应变、应力和粒子速度为εB(t)、σB(t)、v(t),而波阵面紧前方的相应的物理量为0、σ0(ρ(Ф))、0。结合不同的本构关系和动力学方程,可以获得相应的动态响应控制方程,以表征不同冲击情形下梯度多胞材料的动力学行为。由于所采用的多胞材料本构关系不同,同一冲击情形下的众多梯度多胞材料的动态响应理论模型的区别,主要集中在压实区应变和冲击波波速的表征上。例如:对于R-PP-L模型,压实区应变为锁定应变,即{\varepsilon _{\text{B}}}(\rho (\varPhi )) = {\varepsilon _{\text{D}}}(\rho (\varPhi )) ;对于R-PH或D-R-PH模型,压实区应变为{\varepsilon _{\text{B}}}(\rho (\varPhi )) = {{v(t)} \mathord{\left/ {\vphantom {{v(t)} {(v(t) + c(\rho ))}}} \right. } {(v(t) + c(\rho ))}} ,\dot \varPhi = v(t) + c(\rho ) ,式中c(\rho ) = \sqrt {{{C(\rho )} \mathord{\left/ {\vphantom {{C(\rho )} {{\rho _{\text{s}}}\rho }}} \right. } {({\rho _{\text{s}}}\rho )}}} 为动态材料参数;对于式(4)的材料模型,压实区应变为{\varepsilon _{\text{B}}}(\rho (\varPhi )) = {{v(t){\varepsilon _{\text{m}}}} \mathord{\left/ {\vphantom {{v(t){\varepsilon _{\text{m}}}} {(v(t) + c(\rho ))}}} \right. } {(v(t) + c(\rho ))}} ,\dot \varPhi = {{(v(t) + c(\rho ))} \mathord{\left/ {\vphantom {{(v(t) + c(\rho ))} {{\varepsilon _{\text{m}}}}}} \right. } {{\varepsilon _{\text{m}}}}} ,式中c(\rho ) = \sqrt {{{B(\rho )} \mathord{\left/ {\vphantom {{B(\rho )} {{\rho _{\text{s}}}\rho }}} \right. } {({\rho _{\text{s}}}\rho )}}} 为动态材料参数。因此,各动态响应理论模型的精准性很大程度上取决于本构关系的适配性。不同冲击工况和变形模式下的冲击波模型有:爆炸加载情形下的单波[112]、双波[112-113, 136]和三波[113]的冲击波模型,和质量块初速度撞击情形下的单波[80-81, 85, 95, 137]、双波[80-81, 85, 95, 137]和三波[80]的冲击波模型,如表1和图9(a)~(b)所示。表中:m为冲击端质量块的单位面积质量,p(t)为施加的爆炸载荷,下标1、2和3表示试件内部出现的波阵面编号。针对不同的冲击工况,动态响应理论模型的区别主要在于动力学方程,例如质量块初速度撞击和爆炸加载工况的对比,如表1所示。Zhang等[138]将R-PH冲击波模型拓展应用于梯度泡沫填充管的抗爆炸分析中,并取得了良好的效果。后续,一些研究主要基于这几种冲击波模型表征梯度多胞材料的动态力学行为[50, 84, 139-142]。表 1 不同冲击工况下梯度多胞材料的动态响应理论模型Table 1. Theoretical models of the dynamic response for graded cellular materials under different impact scenarios变形模式 质量块初速度撞击[80, 95] 爆炸加载[112] 单波 \left\{ \begin{gathered} \dot \varPhi = \dfrac{v}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ {\sigma _{\text{B}}} = {\sigma _{\text{0}}} + {\rho _{\text{s}}}\rho (\varPhi )\dfrac{{{v^2}}}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ \dot v = \dfrac{{ - {\sigma _{\text{B}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^\varPhi {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} \dot \varPhi = \dfrac{v}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ {\sigma _{\text{B}}} = {\sigma _{\text{0}}} + {\rho _{\text{s}}}\rho (\varPhi )\dfrac{{{v^2}}}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ \dot v = \dfrac{{p(t) - {\sigma _{\text{B}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^\varPhi {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. 双波 \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{ - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{v_2}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot v}_1} = \dfrac{{ - {\sigma _{{\text{B,1}}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\text{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\text{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{ - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{v_2}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot v}_1} = \dfrac{{p(t) - {\sigma _{{\text{B,1}}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\text{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\text{d}}X} }} \\ \end{gathered} \right. 三波 \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{{v_2} - {v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot \varPhi }_3} = \dfrac{{{v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{{({v_2} - {v_3})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,3}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _3})) + {\rho _{\text{s}}}\rho ({\varPhi _3})\dfrac{{{v_3}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {{\dot v}_1} = \dfrac{{ - {\sigma _{{\text{B,1}}}}(\rho ({\varPhi _1}))}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_3} = \dfrac{{{\sigma _{{\text{B,3}}}}(\rho ({\varPhi _2})) - {\sigma _{{\text{B,2}}}}(\rho ({\varPhi _3}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _2}}^{{\varPhi _3}} {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{{v_2} - {v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot \varPhi }_3} = \dfrac{{{v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{{({v_2} - {v_3})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,3}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _3})) + {\rho _{\text{s}}}\rho ({\varPhi _3})\dfrac{{{v_3}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {{\dot v}_1} = \dfrac{{p(t) - {\sigma _{{\text{B,1}}}}(\rho ({\varPhi _1}))}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_3} = \dfrac{{{\sigma _{{\text{B,3}}}}(\rho ({\varPhi _2})) - {\sigma _{{\text{B,2}}}}(\rho ({\varPhi _3}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _2}}^{{\varPhi _3}} {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. 2.3 防护性能分析
不同冲击加载下梯度多胞材料的力学响应与防护性能也得到了广泛的研究[50, 79-80, 95, 111, 137, 140, 143-148]。学者们研究了密度/强度梯度分布对端部位移、速度、应力、载荷、吸能量、比吸能等主要参数的影响规律。Cui等[143]分析了梯度函数、密度差、平均密度和冲击能对梯度泡沫吸能能力的影响。Wang等[79]发现在较低的初始动能冲击下,梯度多胞材料的吸能性能优于均匀多胞材料。吸能能力随着密度差的增大会显著提升,但随着冲击能量的增加,梯度多胞材料的优势逐渐减弱。该工作还发现,通过改变密度梯度,可以实现对冲击端或支撑端处物体的保护,与Yang等[146]得到的结论一致。例如,冲击端密度大的梯度多胞材料有利于保护放置在支撑端后方物体,冲击端密度较小的梯度多胞材料有利于保护撞击物。Wang等[95]还分析了线性密度梯度多胞金属的耐撞性,发现相较于均匀密度或负密度梯度多胞材料,密度单调递增的梯度多胞材料能有效降低峰值应力,使得冲击端应力更加稳定,更有利于保护运动的质量块。Shen等[137]发现,质量块冲击情形下梯度多胞材料发生双冲击波变形会显著削弱梯度多胞材料的能量吸收能力,如图10(a)~(c)所示。Zheng等[80]指出密度分布和冲击效应是影响梯度多胞材料动态响应和动态能量吸收的2个重要因素。在吸能方面,梯度多胞材料与均匀多胞材料相比并没有优势,但通过改变密度梯度可以改善不同位置处(冲击端或支撑端)物体的受力情况,起到保护作用。Liu等[50, 147]通过理论和有限元模拟研究了非线性密度(幂律分布)梯度泡沫在质量块和可变形弹丸冲击下的力学响应,发现幂律指数较大的负密度梯度泡沫有利于保护冲击端的结构,而增大幂律指数会削弱正密度梯度泡沫的抗冲击性能。Gupta等[140]推导获得了梯度多胞材料在质量块冲击下力学响应的解析解,以公式的形式明确了梯度参数对梯度多胞材料冲击响应过程中各物理量的影响。蔡正宇等[112]探讨了梯度多胞抗爆炸牺牲层的梯度参数对支撑端应力峰值和试件临界长度的关系。Ding等[113]分析了梯度-均匀多胞牺牲层的抗爆炸动力学响应,发现均匀多胞芯层设计是实现最佳质量设计的良好选择,而从临界长度设计指标的角度来看梯度-均匀多胞芯层设计更具优势,为工程设计提供了一个在特定爆炸载荷下最佳牺牲层长度的分区图,如图10(d)~(f)所示。这些工作为梯度多胞材料在抗爆炸、抗冲击方面的应用与设计提供了基础性的认识与优化的方向。
3. 梯度多胞材料的设计
3.1 抗冲击结构设计
生活中存在各种各样的碰撞问题,例如空投坦克、返回舱着陆和鸟撞飞机等,一旦发生碰撞,多伴随生命和财产损失,因而碰撞安全性日益受到重视,并需要设计优异的能量吸收器以吸收能量。能量吸收器通过调控传递的载荷以维持被保护对象(人或物)上作用力低于其耐受值,从而实现对人或物的保护功能,提高人或物忍耐撞击的性能,因而应用于各类碰撞问题防护领域。在实际应用中,一些运动物体,如失控的小型飞机、车辆和小型快速空投装置等,需要使用能量吸收平台进行回收。为了安全回收移动的物体,可能需要将施加在物体上的冲击力控制在临界值以下,因此,亟需设计合适的能量吸收器。能量吸收器设计和选择的一般原理[149]为:发生不可逆能量转换,受限制的、相当恒定的反作用力,较长的行程,稳定及可重复的变形模式,重量轻,比吸能高,低成本和易安装。其中,除发生不可逆变形以避免发生多次碰撞的基本设计要求外,恒定作用力是非常重要的耐撞性设计目标。因此,如何设计和选择合适的吸能器以满足耐撞性设计原理,一直是碰撞问题的研究热点。
具有密度梯度分布的不同多胞结构的动态压溃行为和能量吸收性能得到了大量研究,例如不规则泡沫[144]、空球壳泡沫[68, 96]、聚氨酯泡沫[64-65, 150]和3D打印PLA泡沫[87-88]。研究表明,能量吸收行为和峰值应力取决于密度分布[87-88],而密度分布函数的凸梯度比凹梯度的吸能能力更好[143, 151],并且已由实验[64, 73, 96]证实。Wang等[95]分析了线性密度梯度多胞金属的耐撞性,发现密度单调递增的梯度模型能有效降低峰值应力。Liu等[151]也揭示了使用适当的密度梯度来降低撞击结构所受最大冲击应力的可能性。但在实际应用中,优质的能量吸收器不仅需要出色的能量吸收能力,还需要尽可能控制负载以满足实际耐撞性要求。
以往的研究工作[95, 143, 151]多关注于研究给定梯度形式和分布的梯度多胞材料的力学行为,而极少考虑其载荷调控的功能。合适的梯度多胞材料可以提高结构的耐撞性,但是若以“试”的方式筛选,实际应用过程普遍比较耗时和不经济。郑志军课题组提出了耐撞性反向设计的思路,即在给定的耐撞性要求,通过冲击波原理指导梯度多胞材料的密度设计,开展了一系列研究[75-77, 148, 152],并形成了考虑和不考虑多胞材料率敏感性的梯度多胞材料的耐撞性设计策略。该设计策略针对的冲击情形为一个质量M的受保护物体以v0的初速度撞击一个静止的相对密度分布为ρ(X)的梯度多胞杆,耐撞性要求为控制冲击载荷为一个恒定值F0。该反向设计策略的控制方程为:
\left\{ \begin{gathered} \frac{{{\rm{d}}\rho (\varPhi (t))}}{{{\rm{d}}t}} = \frac{{{\rho _{\text{s}}}\rho \left( {3v + 2c(\rho )} \right){F_0}/M}}{{{\sigma '_0}(\rho ) + {\rho _{\text{s}}}{v^2} + {\rho _{\text{s}}}v\left( {c(\rho ) + \rho c'(\rho )} \right)}} \\ \frac{{{\rm{d}}\varPhi (t)}}{{{\rm{d}}t}} = v(t) + c(\rho ),\quad v(t) = {v_0} - \frac{{{F_0}}}{M}t,\quad c(\rho ) = \sqrt {\frac{{C(\rho )}}{{{\rho _{\rm{s}}}\rho }}} \\ \end{gathered} \right. (7) 式中:v(t)为t时刻质量块的冲击速度,上标“'”表示对ρ的导数。运用级数法,获得了密度分布的显式渐近解[76-77, 148, 152]。
该设计策略基于率无关/相关、刚性-塑性硬化(R-PH/D-R-PH)冲击波模型,并根据不同的冲击力设计要求,反向获得了梯度多胞材料的合适的密度分布。基于Voronoi技术和变胞元尺寸法构建了梯度随机蜂窝[148]和梯度闭孔泡沫[76, 152]的细观有限元模型;通过增材制造技术制备了特定密度分布的试件并开展了质量块撞击试验[77],验证了反向设计策略的有效性、适用性、精准性和实用性,如图11所示。该系列研究发现:耐撞性设计策略的控制方程是隐式方程并无显式解,通过级数法给出了密度分布的显式近似解,提升了设计的简便性;未考虑多胞材料的率敏感性效应,会导致被保护物受载略高于其耐受值,而引入率敏感性效应后使得被保护物受载略低于其耐受值,使得耐撞性设计策略更安全,提升了设计的精准性。该系列工作为吸能材料和结构的轻量化设计提供了许多新思路。
3.2 抗爆炸结构设计
爆炸冲击波对特种车辆、舰船以及人员都具有严重的威胁,亟需发展高性能抗爆炸防护结构以抵御爆炸冲击波带来的伤害。爆炸冲击具有载荷大、历时短和破坏性高等特点。抵御爆炸冲击载荷的防护主要包括2个方面[153-154]:(1) 分散冲击载荷,即从空间和时间上降低载荷的集中程度,从空间上,将冲击载荷更均匀地分散作用在防护结构上,降低载荷的集中程度,从时间上,将峰值大、持续时间短的强瞬态冲击载荷分散为峰值相对较小、持续时间相对较长的冲击载荷或准静态载荷;(2) 吸收冲击能量,即以材料的塑性变形或破坏将冲击能量转化为防护结构的永久变形能。以可压缩的材料作为芯层的夹芯板结构是很好的抗爆炸防护结构,它对爆炸载荷的防护满足了上述抗爆炸防护思想,其通过面板分散爆炸冲击,并通过芯层吸收大量能量,从而传递给背板较低的应力,最后通过整体变形耗散剩余能量。由于多胞材料存在大量空隙,能发生较大的塑性变形,具有优越的能量吸收和缓冲能力,因此,常作为夹芯板的牺牲芯层,其在抗爆炸中的表现与应用已获得了学者们的深入研究。
梯度多胞材料由于其力学性能的可控性和可设计性,在抗爆炸中可能展现出优于均匀多胞材料的防护特性,因此,近年来受到了越来越多的关注[109, 112-113, 130, 136, 155-160]。Ma等[136]提出了双层多胞牺牲层爆炸缓冲和吸能的解析解,发现将高密度泡沫置于迎爆侧、低密度泡沫置于远端的设计抗爆炸性能更弱。但是当考虑后部结构的受力时,Liao等[109]认为高密度泡沫在迎爆侧的设计更优,因为后部低密度泡沫牺牲层传递到结构上的力更小,并且给出了双层牺牲层的临界长度解析解,得到了泡沫密度以及2块质量块的质量比对临界长度的影响规律,提出了双层牺牲层的优化设计策略。Zhou等[155]发现,在相同的爆炸载荷下,梯度多胞材料由于在冲击端的密度最大,其所需耗散的总能量少于具有相同质量和厚度的均匀多胞材料。此外,梯度泡沫防护层的吸能量随着密度梯度的增大而减少,且密度梯度越大,梯度多胞材料的最终变形越小。Xia等[156]将梯度泡沫铝应用于钢筋混凝土的抗爆炸防护中,通过爆炸试验发现,相较于均匀多胞材料,梯度多胞材料可以更好地抵御爆炸载荷,保护钢筋混凝土。Yin等[157]通过理论分析和数值模拟研究了连续梯度多胞牺牲层抗水下爆炸的防护性能,比较了梯度和均匀多胞牺牲层的压实应力、对被保护结构的最大作用力、冲击波做功等参数,发现前者优于后者。上述研究均证实了梯度多胞材料在抗爆炸防护上的优越性。
与以动能为主的冲击载荷不同,爆炸载荷为冲量加载,即系统质量越大,获得的速度越低,系统获得的总能量越低,这也是冲击端密度大的梯度多胞牺牲层所需耗散的总能量反而较低的原因。对于不同质量的抗爆炸牺牲层,所需耗散的总能量均不相同。然而,许多研究工作认为的吸能能力优的牺牲层结构可作为优异的抗爆炸结构[161-162]的观点可能存在误区。Zhang等[138]研究了3种类型的蜂窝夹芯板的抗爆炸设计,发现吸能量大的结构背板挠度也大。因此,芯层的吸能量与结构抗爆炸性能没有直接的关联。实际应用中的抗爆炸结构常受到空间和质量的限制,如何在严酷的空间和质量限制下实现最优的防护能力,如实现更短的临界长度和更低的传递载荷峰值,成为结构抗爆炸设计的关键。Liang等[158, 160]和Lan等[159]发现,梯度多胞材料在抗爆炸过程中难以同时满足高能量吸收和低脉冲传递的要求。Liang等[158]认为,梯度芯层的吸能存在优势,并且可以衰减冲量,然而该结论存疑,因为动量守恒定律是一个基础的规律,不能被突破。郑志军课题组系统研究了均匀[109, 130]、高低密度串联[109]、正/负梯度[112]、梯度与均匀串联[113]、梯度填充管[138]等形式的牺牲层的抗爆炸性能,发现从临界长度的角度观察,引入密度梯度设计更有利,还发现轻微负梯度多胞填充管是设计长度短、传力低的抗爆牺牲层的良好选择,并给出了牺牲层设计的临界长度等关键参数的设计策略,可根据应用场景与需求对这几种多胞牺牲层进行筛选,如图12所示。
3.3 载荷模拟器设计
除了在抗爆炸抗冲击领域中具有广阔的应用前景,多胞材料也可作为冲击测试各类防护结构的测试工具。多胞材料在高速冲击过程中产生的塑性冲击波会引起应力增强[6],可以产生高峰值、短脉宽的冲击载荷。多胞材料的压溃应力与其相对密度高度相关,因此,梯度多胞材料具备精确模拟各类冲击载荷的潜力。Radford等[163]率先提出了一种简单、可控的测试方法,即发射均质金属泡沫制成的子弹冲击被测试物体以产生一定形式的冲击载荷,发现改变泡沫子弹的速度、密度和长度可以控制冲击载荷的脉冲幅值和持续时间。在均匀泡沫子弹的基础上,Chen等[164]提出了一种由均匀聚氨酯泡沫-致密聚氨酯塑料-铝制质量块组成的软弹,泡沫与质量块中间的致密聚氨酯可以防止软弹在冲击过程中率先从质量块处开始压溃,尾部的铝制质量块用来提高子弹整体的动量并保证聚氨酯泡沫被尽可能多地压溃,产生脉宽较宽的冲击载荷。Li等[165]提出了一种新型复合弹,即一种嵌入了碎片模拟弹(fragmentation simulation bullet, FSP)的圆柱形均匀泡沫铝子弹。FSP被嵌入泡沫铝子弹的尾部,当泡沫子弹被压溃至底部时破片飞出,这种复合弹可用于模拟冲击和破片复合加载。通过与其他材料或结构相组合,多胞子弹具有模拟各种冲击加载情形的巨大潜力。
防护结构在服役过程中可能因遭受爆炸载荷而发生破坏乃至失效,开展爆炸试验是获知结构抗冲击性能的主要手段之一。但由于炸药自身的危险性和储备炸药的严苛性,具备开展爆炸试验研究条件的实验室较少,从而制约了轻质复合结构抗爆炸性能研究的广泛开展。为在实验室内大量地测试新型结构的冲击特性,亟需发展简单、可靠、安全和经济的动态实验加载和测试技术。由于多胞子弹的简便性和可控性,其已被广泛应用于抗爆炸防护结构的防护性能研究中。Radford等[166-167]使用泡沫子弹测试并比较了单梁与瓦楞芯、金字塔芯和泡沫铝芯3类夹芯梁的抗冲击性能以及单板和泡沫铝夹芯板的抗冲击能力,发现同等质量下夹芯梁的抗冲击性能优于单梁,同时验证了泡沫子弹这一测试手段的可靠性。除此之外,太原理工大学王志华课题组[168-176]、哈尔滨工业大学张伟课题组[177-178]以及北京理工大学李营课题组[179-182]均使用均匀泡沫铝子弹对各类夹芯梁、板、壳结构开展了冲击测试,研究了夹芯结构的变形、破坏等力学响应行为和抗冲击性能。然而,均匀泡沫子弹产生的冲击载荷形式与矩形/线性脉冲相似,且其载荷形状无法通过改变长度、密度和速度进行调控,更难以形成与爆炸载荷相似的具有非线性衰减特征的冲击载荷。此外,在以往的研究中,学者们对均匀多胞子弹的冲击载荷的认识均是在冲击弹性杆情形下获得的,而在实际的冲击测试中,被冲击靶体会产生变形,靶体与多胞子弹之间的力、位移和速度的耦合关系对多胞子弹冲击载荷的影响尚未得知。为解决这一问题,张元瑞等[183]提出了一种考虑弹靶耦合效应的分析模型,准确预测了均匀多胞子弹冲击单梁时子弹和单梁的响应过程,并通过有限元模拟进行了验证,发现均匀多胞子弹作用于单梁上的冲击载荷与爆炸载荷仍存在较大差异。因此,均匀多胞子弹冲击下防护结构的力学响应行为实际上与其在爆炸载荷作用下的响应行为并不一致,难以准确反映防护结构的真实抗爆炸性能。
准确模拟真实爆炸情形中的爆炸载荷有利于指导防护结构的抗爆炸性能分析和优化研究。梯度多胞材料的耐撞性反向设计方法[75-77, 148, 152]启发了爆炸载荷模拟器的研究。通过对多胞材料密度分布的设计与调控,不仅可以使其在被动冲击过程中保持特定的载荷形式,也可能使其在主动冲击过程中产生具有特定形式的冲击载荷。Li等[184]在多胞子弹中引入了线性密度梯度,但多胞子弹产生的冲击载荷仍呈线性衰减,表明需基于精准的力学模型对多胞材料的密度分布进行合理、严谨的反向设计,才能模拟出具有复杂衰减特征的爆炸载荷。Zhang等[78]提出了一种模拟爆炸载荷加载的梯度多胞子弹并构建了其多尺度设计策略,如图13所示。在耦合分析模型的基础上,构建了模拟爆炸载荷加载的梯度多胞子弹的密度分布ρ(X)的设计理论,子弹密度分布设计的关键控制方程为:
\left\{ \begin{gathered} {\sigma _0}(\rho ) + {\rho _{\text{s}}}\rho (X)\left( {{v_2}(t) - {v_1}(t)} \right)\left( {{v_2}(t) - {v_1}(t) + c(\rho )} \right) = p(t) + {m_1}(t){{\dot v}_1}(t) \\ \dot \varPhi {\text{(}}t{\text{)}} = {v_2}{\text{(}}t{\text{)}} - {v_1}{\text{(}}t{\text{)}} + c{\text{(}}\rho {\text{)}},\quad\;\; {m_1}(t) = \int_0^{\varPhi {\text{(}}t{\text{)}}} {{\rho _{\text{s}}}\rho } (X){\text{d}}X \\ {{\dot v}_2}(t) = \frac{{ - {\sigma _0}(\rho )}}{{{m_{\text{p}}} - {m_1}(t)}}{\text{,}}\quad\;\;c(\rho ) = \sqrt {\frac{{C(\rho )}}{{{\rho _ {\rm{s}}}\rho }}} \\ \end{gathered} \right. (8) 式中:mp为梯度多胞子弹的总质量,p(t)为t时刻的爆炸载荷,v2(t)为子弹波阵面前的冲击速度,v1(t)为子弹波阵面后的速度(即单梁的跨中速度),m1(t)为子弹压溃部分的单位面积质量,点号表示对时间t的导数。随后根据预设密度分布对梯度多胞子弹的细观构型进行设计,并结合3D打印技术实现了梯度多胞子弹的精准、可重复制备。结合有限元模拟与实验结果发现,模拟爆炸载荷加载的梯度多胞子弹冲击可变形固支单梁时,可在冲击区域内精确地产生与爆炸载荷形式相同的冲击载荷。通过调控梯度多胞子弹的质量和初速度,还可以使梯度多胞子弹的有效模拟时长增长,提升其对爆炸载荷的模拟效果。使用这种模拟爆炸载荷加载的梯度多胞子弹可以简单、快速、准确地对防护结构的抗爆炸性能进行评估,其设计框架和应用场景也可以被进一步推广至模拟各类复杂冲击载荷和测试各类复杂防护结构中。
4. 总结与展望
系统回顾了梯度多胞材料的动态力学性能分析与设计的国内外研究工作。
(1) 介绍了自然与人工、分层与连续梯度、强度与密度梯度、传统和增材制造等不同类型的梯度多胞材料。自然环境中多样的生物结构为轻质防护结构设计提供了先进模板,但单纯的仿生设计在高速冲击下不一定有效。此外,介绍了基于Voronoi技术的变胞元尺寸法,用于构建连续变密度的梯度多胞材料的细观有限元模型,突破传统分层构型的技术限制。增材制造技术突破了传统制备工艺的限制,可高精度制造细观构型多样且复杂的梯度多胞结构,增强了可设计性和精准性。
(2) 较系统地总结了梯度多胞材料在不同冲击加载下的压溃变形特征,并阐明了其存在惯性效应与密度/强度梯度的竞争机制;介绍了基于变形局部化特征和应力波理论建立的一维非线性塑性冲击波模型和动态响应分析理论,以及密度梯度对梯度多胞材料在冲击、爆炸加载等情形下力学性能的影响,为后续的结构优化设计、载荷调控等建立了可靠的理论基础。
(3) 以冲击波模型为力学原理指导梯度多胞材料/结构设计,重点介绍了梯度多胞材料耐撞性反向设计、多种抗爆炸夹芯结构设计、计及弹靶耦合效应的爆炸载荷模拟器设计等策略。可根据设计要求进行反向设计,突破了传统“试”的筛选模式,高效地实现了最佳防护效果或载荷精准控制,为抗冲击/抗爆炸防护设计和快速评估提供了理论基础和技术支撑。
梯度多胞材料在极端、强载防护方面还存在许多难题和挑战亟待解决,主要包括以下3个方面。
(1) 极端环境下梯度多胞材料的力学性能评价以及优化设计研究。航空航天、军事国防等领域的轻质防护结构面临的环境复杂且极端,受实验技术等的限制,当前的梯度多胞材料研究大多集中在常温、中高速、小当量爆炸等加载工况,没有考虑极高/低温、超高速撞击等极端环境对其动态力学性能和结构优化设计策略的影响。弹药低速、高速、超高速冲击碰撞过程中,内部重要精密仪器、药柱等极大可能面临强过载问题,当前的梯度多胞材料的耐撞性研究对该防护需求的应用研究不足。
(2) 梯度多胞材料复合结构的力学性能评价以及优化设计研究。单独的梯度多胞材料的吸能量、载荷调控范围有限,往往难以应对实际应用中大能量冲击和强载荷调控,因而通常将其与薄壁管或板材等其他结构复合使用。但是,直接依赖载荷叠加而进行的简单填充设计往往忽略了薄壁管等结构与填充物之间的相互作用的影响,而在强相互作用区域部位进行选择性的部分填充设计,或许可实现“四两拨千斤”的效果,用较少的填充物质量满足高吸能和强载荷的要求。对于多胞复合结构,现有的梯度多胞材料动态力学行为的理论分析、载荷调控设计策略的适用性亟需探讨。
(3) 复杂载荷加载的梯度多胞材料载荷模拟器设计研究。爆炸载荷具有强非线性特征,包含超压区和负压区,而梯度多胞材料的载荷模拟设计未考虑负压区的影响。此外,水下/土壤爆炸和接触/近距离爆炸等情形的爆炸载荷并非单纯的指数衰减形式,如何模拟复杂形式的载荷加载是后续梯度多胞材料载荷模拟器拓展研究的难点。
-
表 1 不同冲击工况下梯度多胞材料的动态响应理论模型
Table 1. Theoretical models of the dynamic response for graded cellular materials under different impact scenarios
变形模式 质量块初速度撞击[80, 95] 爆炸加载[112] 单波 \left\{ \begin{gathered} \dot \varPhi = \dfrac{v}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ {\sigma _{\text{B}}} = {\sigma _{\text{0}}} + {\rho _{\text{s}}}\rho (\varPhi )\dfrac{{{v^2}}}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ \dot v = \dfrac{{ - {\sigma _{\text{B}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^\varPhi {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} \dot \varPhi = \dfrac{v}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ {\sigma _{\text{B}}} = {\sigma _{\text{0}}} + {\rho _{\text{s}}}\rho (\varPhi )\dfrac{{{v^2}}}{{{\varepsilon _{\text{B}}}(\rho (\varPhi ))}} \\ \dot v = \dfrac{{p(t) - {\sigma _{\text{B}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^\varPhi {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. 双波 \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{ - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{v_2}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot v}_1} = \dfrac{{ - {\sigma _{{\text{B,1}}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\text{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\text{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{ - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{v_2}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot v}_1} = \dfrac{{p(t) - {\sigma _{{\text{B,1}}}}}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\text{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\text{d}}X} }} \\ \end{gathered} \right. 三波 \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{{v_2} - {v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot \varPhi }_3} = \dfrac{{{v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{{({v_2} - {v_3})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,3}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _3})) + {\rho _{\text{s}}}\rho ({\varPhi _3})\dfrac{{{v_3}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {{\dot v}_1} = \dfrac{{ - {\sigma _{{\text{B,1}}}}(\rho ({\varPhi _1}))}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_3} = \dfrac{{{\sigma _{{\text{B,3}}}}(\rho ({\varPhi _2})) - {\sigma _{{\text{B,2}}}}(\rho ({\varPhi _3}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _2}}^{{\varPhi _3}} {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. \left\{ \begin{gathered} {{\dot \varPhi }_1} = \dfrac{{{v_1} - {v_2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {{\dot \varPhi }_2} = \dfrac{{{v_2} - {v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {{\dot \varPhi }_3} = \dfrac{{{v_3}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {\sigma _{{\text{B,1}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _1})) + {\rho _{\text{s}}}\rho ({\varPhi _1})\dfrac{{{{({v_1} - {v_2})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _1}))}} \\ {\sigma _{{\text{B,2}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _2})) + {\rho _{\text{s}}}\rho ({\varPhi _2})\dfrac{{{{({v_2} - {v_3})}^2}}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _2}))}} \\ {\sigma _{{\text{B,3}}}} = {\sigma _{\text{0}}}(\rho ({\varPhi _3})) + {\rho _{\text{s}}}\rho ({\varPhi _3})\dfrac{{{v_3}^2}}{{{\varepsilon _{\text{B}}}(\rho ({\varPhi _3}))}} \\ {{\dot v}_1} = \dfrac{{p(t) - {\sigma _{{\text{B,1}}}}(\rho ({\varPhi _1}))}}{{m + {\rho _{\text{s}}}\displaystyle\int_0^{{\varPhi _1}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_2} = \dfrac{{{\sigma _{\text{0}}}(\rho ({\varPhi _1})) - {\sigma _{\text{0}}}(\rho ({\varPhi _2}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _1}}^{{\varPhi _2}} {\rho (X){\rm{d}}X} }} \\ {{\dot v}_3} = \dfrac{{{\sigma _{{\text{B,3}}}}(\rho ({\varPhi _2})) - {\sigma _{{\text{B,2}}}}(\rho ({\varPhi _3}))}}{{{\rho _{\text{s}}}\displaystyle\int_{{\varPhi _2}}^{{\varPhi _3}} {\rho (X){\rm{d}}X} }} \\ \end{gathered} \right. -
[1] ZHANG Z Q, YANG J L. Improving safety of runway overrun through foamed concrete aircraft arresting system: an experimental study [J]. International Journal of Crashworthiness, 2015, 20(5): 448–463. DOI: 10.1080/13588265.2015.1033971. [2] YANG X F, YANG J L, ZHANG Z Q, et al. A review of civil aircraft arresting system for runway overruns [J]. Progress in Aerospace Sciences, 2018, 102: 99–121. DOI: 10.1016/j.paerosci.2018.07.006. [3] 田斌, 李如江, 赵家骏, 等. 钢板与泡沫铝复合板弹药包装箱的对比研究 [J]. 兵器装备工程学报, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.TIAN B, LI R J, ZHAO J J, et al. Comparative study of steel plate and foam aluminum composite plate ammunition packaging box [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040. [4] 张凯, 张庆明, 贾伟. 多层圆管夹芯结构的装甲车底板防爆设计 [J]. 安全与环境学报, 2017, 17(3): 969–974. DOI: 10.13637/j.issn.1009-6094.2017.03.030.ZHANG K, ZHANG Q M, JIA W. On the safety design of the multilayer circular-tube structure of the armored vehicle plate under the explosion loading [J]. Journal of Safety and Environment, 2017, 17(3): 969–974. DOI: 10.13637/j.issn.1009-6094.2017.03.030. [5] 张钱城, 郝方楠, 李裕春, 等. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539.ZHANG Q C, HAO F N, LI Y C, et al. Research progress in the injury and protection to vehicle and passengers under explosive shock loading [J]. Mechanics in Engineering, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539. [6] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. DOI: 10.1016/S0734-743X(97)00016-X. [7] GROSSER D, LIESE W. On the anatomy of Asian bamboos, with special reference to their vascular bundles [J]. Wood Science and Technology, 1971, 5(4): 290–312. DOI: 10.1007/BF00365061. [8] ZHANG W, YIN S, YU T X, et al. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb [J]. International Journal of Impact Engineering, 2019, 125: 163–172. DOI: 10.1016/j.ijimpeng.2018.11.014. [9] ASHBY M F. The properties of foams and lattices [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 15–30. DOI: 10.1098/rsta.2005.1678. [10] CHEN L M, ZHANG J, DU B, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load [J]. Thin-Walled Structures, 2018, 127: 333–343. DOI: 10.1016/j.tws.2017.10.048. [11] WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. DOI: 10.1016/j.compositesb.2019.02.011. [12] BACIGALUPO A, DE BELLIS M L, MISSERONI D. Design of tunable acoustic metamaterials with periodic piezoelectric microstructure [J]. Extreme Mechanics Letters, 2020, 40: 100977. DOI: 10.1016/j.eml.2020.100977. [13] WANG Z G, ZHOU Y, WANG X X, et al. Compression behavior of strut-reinforced hierarchical lattice—experiment and simulation [J]. International Journal of Mechanical Sciences, 2021, 210: 106749. DOI: 10.1016/j.ijmecsci.2021.106749. [14] SUN Z P, GUO Y B, SHIM V P W. Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures—effects of cell topology and material anisotropy [J]. Thin-Walled Structures, 2021, 169: 108420. DOI: 10.1016/j.tws.2021.108420. [15] XIAO L J, XU X, FENG G Z, et al. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures [J]. International Journal of Mechanical Sciences, 2022, 219: 107093. DOI: 10.1016/j.ijmecsci.2022.107093. [16] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. part Ⅱ-‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. DOI: 10.1016/j.jmps.2005.05.003. [17] ELNASRI I, PATTOFATTO S, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part Ⅰ experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652–2671. DOI: 10.1016/j.jmps.2007.04.005. [18] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals [J]. International Journal of Solids and Structures, 2009, 46(22/23): 3988–3998. DOI: 10.1016/j.ijsolstr.2009.07.024. [19] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013. [20] SUN Y L, LI Q M, MCDONALD S A, et al. Determination of the constitutive relation and critical condition for the shock compression of cellular solids [J]. Mechanics of Materials, 2016, 99: 26–36. DOI: 10.1016/j.mechmat.2016.04.004. [21] WANG H R, LI S Q, LIU Z F, et al. Investigation on the dynamic response of circular sandwich panels with the bio-inspired gradient core [J]. Thin-Walled Structures, 2020, 149: 106667. DOI: 10.1016/j.tws.2020.106667. [22] LAZARUS B S, CHADHA C, VELASCO-HOGAN A, et al. Engineering with keratin: a functional material and a source of bioinspiration [J]. iScience, 2021, 24(8): 102798. DOI: 10.1016/j.isci.2021.102798. [23] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013. [24] LE BARBENCHON L, GIRARDOT J, KOPP J B, et al. Multi-scale foam: 3D structure/compressive behaviour relationship of agglomerated cork [J]. Materialia, 2019, 5: 100219. DOI: 10.1016/j.mtla.2019.100219. [25] LAUNEY M E, BUEHLER M J, RITCHIE R O. On the mechanistic origins of toughness in bone [J]. Annual Review of Materials Research, 2010, 40: 25–53. DOI: 10.1146/annurev-matsci-070909-104427. [26] SARANATHAN V, OSUJI C O, MOCHRIE S G J, et al. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11676–11681. DOI: 10.1073/pnas.0909616107. [27] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1988. [28] WESTER T. Nature teaching structures [J]. International Journal of Space Structures, 2002, 17(2/3): 135–147. DOI: 10.1260/026635102320321789. [29] HELFMAN COHEN Y, REICH Y, GREENBERG S. Biomimetics: structure-function patterns approach [J]. Journal of Mechanical Design, 2014, 136(11): 111108. DOI: 10.1115/1.4028169. [30] TAVSAN C, TAVSAN F, SONMEZ E. Biomimicry in architectural design education [J]. Procedia-Social and Behavioral Sciences, 2015, 182: 489–496. DOI: 10.1016/j.sbspro.2015.04.832. [31] AZIZ M S, EL SHERIF A Y. Biomimicry as an approach for bio-inspired structure with the aid of computation [J]. Alexandria Engineering Journal, 2016, 55(1): 707–714. DOI: 10.1016/j.aej.2015.10.015. [32] BUCKWALTER J A, GLIMCHER M J, COOPER R R, et al. Bone biology. Ⅰ: structure, blood supply, cells, matrix, and mineralization [J]. Instructional Course Lectures, 1996, 45: 371–386. [33] NOGATA F, TAKAHASHI H. Intelligent functionally graded material: bamboo [J]. Composites Engineering, 1995, 5(7): 743–751. DOI: 10.1016/0961-9526(95)00037-N. [34] AMADA S, MUNEKATA T, NAGASE Y, et al. The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials [J]. Journal of Composite Materials, 1996, 30(7): 800–819. DOI: 10.1177/002199839603000703. [35] RAY A K, DAS S K, MONDAL S, et al. Microstructural characterization of bamboo [J]. Journal of Materials Science, 2004, 39(3): 1055–1060. DOI: 10.1023/B:JMSC.0000012943.27090.8f. [36] SILVA E C N, WALTERS M C, PAULINO G H. Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials [J]. Journal of Materials Science, 2006, 41(21): 6991–7004. DOI: 10.1007/s10853-006-0232-3. [37] HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms [J]. Acta Biomaterialia, 2015, 16: 178–186. DOI: 10.1016/j.actbio.2015.01.038. [38] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials [J]. Nature Materials, 2015, 14(1): 23–36. DOI: 10.1038/nmat4089. [39] EDER M, JUNGNIKL K, BURGERT I. A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst. ) [J]. Trees, 2009, 23(1): 79-84. DOI: 10.1007/s00468-008-0256-1. [40] SPECK T, BURGERT I. Plant stems: functional design and mechanics [J]. Annual Review of Materials Research, 2011, 41: 169–193. DOI: 10.1146/annurev-matsci-062910-100425. [41] BOROWSKA-WYKRĘT D, RYPIEŃ A, DULSKI M, et al. Gradient of structural traits drives hygroscopic movements of scarious bracts surrounding Helichrysum bracteatum capitulum [J]. Annals of Botany, 2017, 119(8): 1365–1383. DOI: 10.1093/aob/mcx015. [42] DENG K, KOVALEV A, RAJABI H, et al. The damping properties of the foam-filled shaft of primary feathers of the pigeon Columba livia [J]. The Science of Nature, 2021, 109(1): 1. DOI: 10.1007/s00114-021-01773-7. [43] YANG T, CHEN H S, JIA Z A, et al. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus [J]. Science, 2022, 375(6581): 647–652. DOI: 10.1126/science.abj9472. [44] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals [J]. Progress in Materials Science, 2001, 46(3/4): 309–327. DOI: 10.1016/S0079-6425(00)00016-5. [45] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747–1769. DOI: 10.1016/S0022-5096(01)00010-2. [46] YAO R Y, PANG T, HE S Y, et al. A bio-inspired foam-filled multi-cell structural configuration for energy absorption [J]. Composites Part B: Engineering, 2022, 238: 109801. DOI: 10.1016/j.compositesb.2022.109801. [47] ZHANG Y, HE S Y, LIU J G, et al. Density gradient tailoring of aluminum foam-filled tube [J]. Composite Structures, 2019, 220: 451–459. DOI: 10.1016/j.compstruct.2019.04.026. [48] BROTHERS A H, DUNAND D C. Density-graded cellular aluminum [J]. Advanced Engineering Materials, 2006, 8(9): 805–809. DOI: 10.1002/adem.200600074. [49] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872.ZHANG X C, LIU Y. Research on the dynamic crushing of honeycombs with density gradient [J]. Engineering Mechanics, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872. [50] LIU H, NG B F. Dynamic response of density-graded foam subjected to soft impact [J]. Composite Structures, 2022, 284: 115145. DOI: 10.1016/j.compstruct.2021.115145. [51] PAGLIOCCA N, YOUSSEF G, KOOHBOR B. In-plane mechanical and failure responses of honeycombs with syntactic foam cell walls [J]. Composite Structures, 2022, 295: 115866. DOI: 10.1016/j.compstruct.2022.115866. [52] JEFFERSON A J, SCHNEIDER J, SCHIFFER A, et al. Dynamic crushing of tailored honeycombs realized via additive manufacturing [J]. International Journal of Mechanical Sciences, 2022, 219: 107126. DOI: 10.1016/j.ijmecsci.2022.107126. [53] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06.WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06. [54] FENG G Z, LI S, XIAO L J, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression [J]. International Journal of Mechanical Sciences, 2021, 210: 106746. DOI: 10.1016/j.ijmecsci.2021.106746. [55] ZENG Y, SUN L J, YAO H H, et al. Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology [J]. Ceramics International, 2022, 48(8): 10613–10619. DOI: 10.1016/j.ceramint.2021.12.275. [56] BAI L, GONG C, CHEN X H, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations [J]. International Journal of Mechanical Sciences, 2020, 182: 105735. DOI: 10.1016/j.ijmecsci.2020.105735. [57] JIN M X, FENG Q X, FAN X J, et al. Investigation on the mechanical properties of TPMS porous structures fabricated by laser powder bed fusion [J]. Journal of Manufacturing Processes, 2022, 76: 559–574. DOI: 10.1016/j.jmapro.2022.02.035. [58] QIU N, ZHANG J Z, YUAN F Q, et al. Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting [J]. Engineering Structures, 2022, 263: 114377. DOI: 10.1016/j.engstruct.2022.114377. [59] ZHANG J F, CHEN X H, SUN Y X, et al. Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size [J]. Materials & Design, 2022, 218: 110665. DOI: 10.1016/j.matdes.2022.110665. [60] AL-KETAN O, ABU AL-RUB R K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices [J]. Advanced Engineering Materials, 2019, 21(10): 1900524. DOI: 10.1002/adem.201900524. [61] FENG G Z, LI S, XIAO L J, et al. Mechanical properties and deformation behavior of functionally graded TPMS structures under static and dynamic loading [J]. International Journal of Impact Engineering, 2023, 176: 104554. DOI: 10.1016/j.ijimpeng.2023.104554. [62] AL-KETAN O, ABU AL-RUB R K. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces [J]. Material Design & Processing Communications, 2021, 3(6): e205. DOI: 10.1002/mdp2.205. [63] KOOHBOR B, RAVINDRAN S, KIDANE A. In situ deformation characterization of density-graded foams in quasi-static and impact loading conditions [J]. International Journal of Impact Engineering, 2021, 150: 103820. DOI: 10.1016/j.ijimpeng.2021.103820. [64] KOOHBOR B, KIDANE A. Design optimization of continuously and discretely graded foam materials for efficient energy absorption [J]. Materials & Design, 2016, 102: 151–161. DOI: 10.1016/j.matdes.2016.04.031. [65] KOOHBOR B, KIDANE A, LU W Y, et al. Investigation of the dynamic stress-strain response of compressible polymeric foam using a non-parametric analysis [J]. International Journal of Impact Engineering, 2016, 91: 170–182. DOI: 10.1016/j.ijimpeng.2016.01.007. [66] ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241: 110859. DOI: 10.1016/j.compstruct.2019.04.031. [67] ZHANG J J, WEI H, WANG Z H, et al. Dynamic crushing of uniform and density graded cellular structures based on the circle arc model [J]. Latin American Journal of Solids and Structures, 2015, 12(6): 1102–1125. DOI: 10.1590/1679-78251630. [68] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561: 352–361. DOI: 10.1016/j.msea.2012.10.026. [69] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045. [70] LIANG M Z, LI X Y, LIN Y L, et al. Dynamic compressive behaviors of two-layer graded aluminum foams under blast loading [J]. Materials, 2019, 12(9): 1445. DOI: 10.3390/ma12091445. [71] LIU Y, WU H X, WANG B. Gradient design of metal hollow sphere (MHS) foams with density gradients [J]. Composites Part B: Engineering, 2012, 43(3): 1346–1352. DOI: 10.1016/j.compositesb.2011.11.057. [72] KARAGIOZOVA D, ALVES M. Compaction of a double-layered metal foam block impacting a rigid wall [J]. International Journal of Solids and Structures, 2014, 51(13): 2424–2438. DOI: 10.1016/j.ijsolstr.2014.03.012. [73] KARAGIOZOVA D, ALVES M. Stress waves in layered cellular materials—dynamic compaction under axial impact [J]. International Journal of Mechanical Sciences, 2015, 101/102: 196–213. DOI: 10.1016/j.ijmecsci.2015.07.024. [74] 张健, 赵桂平, 卢天健. 梯度泡沫金属的冲击吸能特性 [J]. 工程力学, 2016, 33(8): 211–220. DOI: 10.6052/j.issn.1000-4750.2014.09.0755.ZHANG J, ZHAO G P, LU T J. Energy absorption behaviour of density-graded metallic foam under impact loading [J]. Engineering Mechanics, 2016, 33(8): 211–220. DOI: 10.6052/j.issn.1000-4750.2014.09.0755. [75] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010. [76] CHANG B X, ZHENG Z J, ZHANG Y L, et al. Crashworthiness design of graded cellular materials: an asymptotic solution considering loading rate sensitivity [J]. International Journal of Impact Engineering, 2020, 143: 103611. DOI: 10.1016/j.ijimpeng.2020.103611. [77] CHANG B X, ZHENG Z J, ZHANG Y R, et al. Crashworthiness design of graded cellular materials: experimental verification of the backward design strategy [J]. International Journal of Impact Engineering, 2023, 171: 104366. DOI: 10.1016/j.ijimpeng.2022.104366. [78] ZHANG Y R, ZHU Y D, CHANG B X, et al. Blast-loading simulators: multiscale design of graded cellular projectiles considering projectile-beam coupling effect [J]. Journal of the Mechanics and Physics of Solids, 2023, 180: 105402. DOI: 10.1016/j.jmps.2023.105402. [79] WANG X K, ZHENG Z J, YU J L, et al. Impact resistance and energy absorption of functionally graded cellular structures [J]. Applied Mechanics and Materials, 2011, 69: 73–78. DOI: 10.4028/www.scientific.net/AMM.69.73. [80] ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014. [81] SHEN C J, LU G, YU T X, et al. Dynamic response of a cellular block with varying cross-section [J]. International Journal of Impact Engineering, 2015, 79: 53–64. DOI: 10.1016/j.ijimpeng.2014.08.017. [82] SHEN C J, LU G, RUAN D, et al. Propagation of the compaction waves in a cellular block with varying cross-section [J]. International Journal of Solids and Structures, 2016, 88/89: 319–336. DOI: 10.1016/j.ijsolstr.2016.01.014. [83] ZHANG J J, LU G X, RUAN D, et al. Experimental observations of the double shock deformation mode in density graded honeycombs [J]. International Journal of Impact Engineering, 2019, 134: 103386. DOI: 10.1016/j.ijimpeng.2019.103386. [84] RAPAKA S D, PANDEY M, ANNABATTULA R K. Effect of combined gradation in cross-sectional area and density on the dynamic compressive behavior of foams for moderate impact velocities [J]. Mechanics of Materials, 2022, 172: 104381. DOI: 10.1016/j.mechmat.2022.104381. [85] SHEN C J, YU T X, LU G. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. DOI: 10.1016/j.ijsolstr.2012.09.021. [86] DUAN Y, DING Y, LIU Z Y, et al. Effects of cell size vs. cell-wall thickness gradients on compressive behavior of additively manufactured foams [J]. Composites Science and Technology, 2020, 199: 108339. DOI: 10.1016/j.compscitech.2020.108339. [87] DUAN Y, ZHAO X H, DU B, et al. Quasi-static compressive behavior and constitutive model of graded foams [J]. International Journal of Mechanical Sciences, 2020, 177: 105603. DOI: 10.1016/j.ijmecsci.2020.105603. [88] DUAN Y, ZHAO X H, LIU Z Y, et al. Dynamic response of additively manufactured graded foams [J]. Composites Part B: Engineering, 2020, 183: 107630. DOI: 10.1016/j.compositesb.2019.107630. [89] BAI L, GONG C, CHEN X H, et al. Quasi-static compressive responses and fatigue behaviour of Ti-6Al-4V graded lattice structures fabricated by laser powder bed fusion [J]. Materials & Design, 2021, 210: 110110. DOI: 10.1016/j.matdes.2021.110110. [90] DE WAAL L, LU G X, ZHANG J J, et al. Dynamic behaviour of graded origami honeycomb [J]. International Journal of Impact Engineering, 2021, 157: 103976. DOI: 10.1016/j.ijimpeng.2021.103976. [91] YANG J X, CHEN X H, SUN Y X, et al. Compressive properties of bidirectionally graded lattice structures [J]. Materials & Design, 2022, 218: 110683. DOI: 10.1016/j.matdes.2022.110683. [92] ZAMANI M H, HEIDARI-RARANI M, TORABI K. Optimal design of a novel graded auxetic honeycomb core for sandwich beams under bending using digital image correlation (DIC) [J]. Composite Structures, 2022, 286: 115310. DOI: 10.1016/j.compstruct.2022.115310. [93] 王海任, 李世强, 刘志芳, 等. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为 [J]. 爆炸与冲击, 2021, 41(4): 043201. DOI: 10.11883/bzycj-2020-0132.WANG H R, LI S Q, LIU Z F, et al. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading [J]. Explosion and Shock Waves, 2021, 41(4): 043201. DOI: 10.11883/bzycj-2020-0132. [94] LIU H, ZHANG E T, NG B F. In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity [J]. Composite Structures, 2021, 270: 114106. DOI: 10.1016/j.compstruct.2021.114106. [95] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. DOI: 10.1063/2.1303101. [96] ZENG H B, PATTOFATTO S, ZHAO H, et al. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012. [97] MATSUMOTO Y, BROTHERS A H, STOCK S R, et al. Uniform and graded chemical milling of aluminum foams [J]. Materials Science and Engineering: A, 2007, 447(1/2): 150–157. DOI: 10.1016/j.msea.2006.10.049. [98] POLLIEN A, CONDE Y, PAMBAGUIAN L, et al. Graded open-cell aluminium foam core sandwich beams [J]. Materials Science and Engineering: A, 2005, 404(1/2): 9–18. DOI: 10.1016/j.msea.2005.05.096. [99] HASSANI A, HABIBOLAHZADEH A, BAFTI H. Production of graded aluminum foams via powder space holder technique [J]. Materials & Design, 2012, 40: 510–515. DOI: 10.1016/j.matdes.2012.04.024. [100] HE S Y, ZHANG Y, DAI G, et al. Preparation of density-graded aluminum foam [J]. Materials Science and Engineering: A, 2014, 618: 496–499. DOI: 10.1016/j.msea.2014.08.087. [101] HE S Y, LV Y N, CHEN S T, et al. Gradient regulation and compressive properties of density-graded aluminum foam [J]. Materials Science and Engineering: A, 2020, 772: 138658. DOI: 10.1016/j.msea.2019.138658. [102] ZHANG Y, ZANG X Y, WANG K, et al. Fabrication of functionally radial graded metallic foam [J]. Materials Letters, 2020, 264: 127292. DOI: 10.1016/j.matlet.2019.127292. [103] JIANG H, COOMES A, ZHANG Z N, et al. Tailoring 3D printed graded architected polymer foams for enhanced energy absorption [J]. Composites Part B: Engineering, 2021, 224: 109183. DOI: 10.1016/j.compositesb.2021.109183. [104] ABDELMAGEED M, CANTWELL W, ZAKI W. Energy absorption and mechanical response of graded face-centered cubic structures [J]. International Journal of Mechanical Sciences, 2024, 273: 109232. DOI: 10.1016/j.ijmecsci.2024.109232. [105] YU S X, SUN J X, BAI J M. Investigation of functionally graded TPMS structures fabricated by additive manufacturing [J]. Materials & Design, 2019, 182: 108021. DOI: 10.1016/j.matdes.2019.108021. [106] BI S R, CHEN E Z, GAITANAROS S. Additive manufacturing and characterization of brittle foams [J]. Mechanics of Materials, 2020, 145: 103368. DOI: 10.1016/j.mechmat.2020.103368. [107] MASKERY I, ABOULKHAIR N T, AREMU A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J]. Materials Science and Engineering: A, 2016, 670: 264–274. DOI: 10.1016/j.msea.2016.06.013. [108] XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments [J]. International Journal of Impact Engineering, 2018, 111: 255–272. DOI: 10.1016/j.ijimpeng.2017.09.018. [109] LIAO S F, ZHENG Z J, YU J L, et al. A design guide of double-layer cellular claddings for blast alleviation [J]. International Journal of Aerospace and Lightweight Structures, 2013, 3(1): 109–133. DOI: 10.3850/S201042862013000550. [110] LIAO S F, ZHENG Z J, YU J L. On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials [J]. International Journal of Solids and Structures, 2014, 51(2): 478–490. DOI: 10.1016/j.ijsolstr.2013.10.019. [111] DING Y Y, ZHENG Z J, WANG Y G, et al. Impact resistance and design of graded cellular cladding [J]. International Journal of Applied Mechanics, 2018, 10(10): 1850107. DOI: 10.1142/s1758825118501077. [112] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09.CAI Z Y, DING Y Y, WANG S L, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09. [113] DING Y Y, ZHENG Y X, ZHENG Z J, et al. Blast alleviation of sacrificial cladding with graded and uniform cellular materials [J]. Materials, 2020, 13(24): 5616. DOI: 10.3390/ma13245616. [114] WANG P, WANG X K, ZHENG Z J, et al. Stress distribution in graded cellular materials under dynamic compression [J]. Latin American Journal of Solids and Structures, 2017, 14(7): 1251–1272. DOI: 10.1590/1679-78253428. [115] 虞吉林, 余同希, 周风华. 材料和结构的动态吸能 [M]. 合肥: 中国科学技术大学出版社, 2015.YU J L, YU T X, ZHOU F H. Dynamic energy absorption of materials and structures [M]. Hefei: University of Science and Technology of China Press, 2015. [116] CHEN J Y, ZHANG P, CHENG Y S, et al. On the crushing response of the functionally graded metallic foams based on 3D Voronoi model [J]. Thin-Walled Structures, 2020, 157: 107085. DOI: 10.1016/j.tws.2020.107085. [117] LIU Y, WU H X, LU G X, et al. Dynamic properties of density graded thin-walled metal hollow sphere arrays [J]. Mechanics of Advanced Materials and Structures, 2013, 20(6): 478–488. DOI: 10.1080/15376494.2011.627642. [118] SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs—a finite element study [J]. Composite Structures, 2013, 98: 282–293. DOI: 10.1016/j.compstruct.2012.11.002. [119] KARAGIOZOVA D, ZHANG J J, CHEN P W, et al. Response of graded Miura-Ori metamaterials to quasi-static and dynamic in-plane compression [J]. Journal of Aerospace Engineering, 2022, 35(4). DOI: 10.1061/(asce)as.1943-5525.0001416. [120] REID S R, REDDY T Y. Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact— Ⅰ. fixed-ended systems [J]. International Journal of Impact Engineering, 1983, 1(1): 85–106. DOI: 10.1016/0734-743X(83)90014-3. [121] HARRIGAN J J, REID S R, TAN P J, et al. High rate crushing of wood along the grain [J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521–544. DOI: 10.1016/j.ijmecsci.2004.12.013. [122] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. DOI: 10.1016/j.ijimpeng.2011.09.009. [123] PATTOFATTO S, ELNASRI I, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part Ⅱ analysis [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2672–2686. DOI: 10.1016/j.jmps.2007.04.004. [124] ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials: a unified framework of plastic shock wave models [J]. International Journal of Impact Engineering, 2013, 53: 29–43. DOI: 10.1016/j.ijimpeng.2012.06.012. [125] LOPATNIKOV S L, GAMA B A, JAHIRUL HAQUE M, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment [J]. Composite Structures, 2003, 61(1/2): 61–71. DOI: 10.1016/S0263-8223(03)00039-4. [126] LOPATNIKOV S L, GAMA B A, HAQUE M J, et al. High-velocity plate impact of metal foams [J]. International Journal of Impact Engineering, 2004, 30(4): 421–445. DOI: 10.1016/S0734-743X(03)00066-6. [127] LOPATNIKOV S L, GAMA B A, GILLESPIE JR J W. Modeling the progressive collapse behavior of metal foams [J]. International Journal of Impact Engineering, 2007, 34(3): 587–595. DOI: 10.1016/j.ijimpeng.2005.12.004. [128] HARRIGAN J J, REID S R, YAGHOUBI A S. The correct analysis of shocks in a cellular material [J]. International Journal of Impact Engineering, 2010, 37(8): 918–927. DOI: 10.1016/j.ijimpeng.2009.03.011. [129] WANG S L, DING Y Y, WANG C F, et al. Dynamic material parameters of closed-cell foams under high-velocity impact [J]. International Journal of Impact Engineering, 2017, 99: 111–121. DOI: 10.1016/j.ijimpeng.2016.09.013. [130] DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. DOI: 10.1142/s1758825116500575. [131] DING Y Y, WANG S L, ZHENG Z J, et al. Dynamic crushing of cellular materials: a unique dynamic stress-strain state curve [J]. Mechanics of Materials, 2016, 100: 219–231. DOI: 10.1016/j.mechmat.2016.07.001. [132] BARNES A T, RAVI-CHANDAR K, KYRIAKIDES S, et al. Dynamic crushing of aluminum foams: part Ⅰ—experiments [J]. International Journal of Solids and Structures, 2014, 51(9): 1631–1645. DOI: 10.1016/j.ijsolstr.2013.11.019. [133] GAITANAROS S, KYRIAKIDES S. Dynamic crushing of aluminum foams: part Ⅱ—analysis [J]. International Journal of Solids and Structures, 2014, 51(9): 1646–1661. DOI: 10.1016/j.ijsolstr.2013.11.020. [134] GAITANAROS S, KYRIAKIDES S. On the effect of relative density on the crushing and energy absorption of open-cell foams under impact [J]. International Journal of Impact Engineering, 2015, 82: 3–13. DOI: 10.1016/j.ijimpeng.2015.03.011. [135] WANG S L, ZHENG Z J, ZHU C F, et al. Crushing and densification of rapid prototyping polylactide foam: meso-structural effect and a statistical constitutive model [J]. Mechanics of Materials, 2018, 127: 65–76. DOI: 10.1016/j.mechmat.2018.09.003. [136] MA G W, YE Z Q. Energy absorption of double-layer foam cladding for blast alleviation [J]. International Journal of Impact Engineering, 2007, 34(2): 329–347. DOI: 10.1016/j.ijimpeng.2005.07.012. [137] SHEN C J, LU G, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. DOI: 10.1016/j.ijimpeng.2014.02.015. [138] ZHANG H, CHANG B X, PENG K F, et al. Anti-blast analysis and design of a sacrificial cladding with graded foam-filled tubes [J]. Thin-Walled Structures, 2023, 182: 110313. DOI: 10.1016/j.tws.2022.110313. [139] LIU H, DING S R, NG B F. Impact response and energy absorption of functionally graded foam under temperature gradient environment [J]. Composites Part B: Engineering, 2019, 172: 516–532. DOI: 10.1016/j.compositesb.2019.05.072. [140] GUPTA V, KIDANE A, SUTTON M. Closed-form solution for shock wave propagation in density-graded cellular material under impact [J]. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100288. DOI: 10.1016/j.taml.2021.100288. [141] RAPAKA S D, PANDEY M, ANNABATTULA R K. Theoretical analysis on the dynamic compressive behavior of cellular solids with non-linear variation in cross-sectional area [J]. International Journal of Impact Engineering, 2021, 155: 103921. DOI: 10.1016/j.ijimpeng.2021.103921. [142] CHENG Q, YIN J F, WEN J H, et al. Triply periodic minimal surface structures: energy absorption performance under impact loading and their graded design [J]. Mechanics of Advanced Materials and Structures. DOI: 10.1080/15376494.2024.2311237. [143] CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1/2): 215–225. DOI: 10.1016/j.msea.2008.12.011. [144] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. DOI: 10.1016/j.ijsolstr.2010.10.018. [145] ZHANG X, ZHANG H. Optimal design of functionally graded foam material under impact loading [J]. International Journal of Mechanical Sciences, 2013, 68: 199–211. DOI: 10.1016/j.ijmecsci.2013.01.016. [146] YANG J, WANG S L, ZHENG Z J, et al. Impact resistance of graded cellular metals using cell-based finite element models [J]. Key Engineering Materials, 2016, 703: 400–405. DOI: 10.4028/www.scientific.net/KEM.703.400. [147] LIU H, ZHANG Z Q, LIU H, et al. Theoretical investigation on impact resistance and energy absorption of foams with nonlinearly varying density [J]. Composites Part B: Engineering, 2017, 116: 76–88. DOI: 10.1016/j.compositesb.2017.02.012. [148] 常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162.CHANG B X, ZHENG Z J, ZHAO K, et al. A simplified model and its asymptotic solution for the crashworthiness design of graded cellular material [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162. [149] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019. [150] RAVINDRAN S, KOOHBOR B, MALCHOW P, et al. Experimental characterization of compaction wave propagation in cellular polymers [J]. International Journal of Solids and Structures, 2018, 139/140: 270–282. DOI: 10.1016/j.ijsolstr.2018.02.003. [151] LIU J G, HOU B, LU F Y, et al. A theoretical study of shock front propagation in the density graded cellular rods [J]. International Journal of Impact Engineering, 2015, 80: 133–142. DOI: 10.1016/j.ijimpeng.2015.02.001. [152] 常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 041101. DOI: 10.11883/bzycj-2018-0431.CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 041101. DOI: 10.11883/bzycj-2018-0431. [153] LI D, HOU H L, CHEN C H, et al. Experimental study on the combined damage of multi-layered composite structures subjected to close-range explosion of simulated warheads [J]. International Journal of Impact Engineering, 2018, 114: 133–146. DOI: 10.1016/j.ijimpeng.2017.12.007. [154] 赵著杰, 侯海量, 李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展 [J]. 中国舰船研究, 2021, 16(3): 96–111. DOI: 10.19693/j.issn.1673-3185.02053.ZHAO Z J, HOU H L, LI D. Research progress on dynamic characteristics and protective performance of multicellular filled impact resistant protective structure [J]. Chinese Journal of Ship Research, 2021, 16(3): 96–111. DOI: 10.19693/j.issn.1673-3185.02053. [155] ZHOU H Y, WANG Y H, WANG X J, et al. Energy absorption of graded foam subjected to blast: a theoretical approach [J]. Materials & Design, 2015, 84: 351–358. DOI: 10.1016/j.matdes.2015.06.124. [156] XIA Y, WU C Q, LIU Z X, et al. Protective effect of graded density aluminium foam on RC slab under blast loading—an experimental study [J]. Construction and Building Materials, 2016, 111: 209–222. DOI: 10.1016/j.conbuildmat.2016.02.092. [157] YIN C Y, JIN Z Y, CHEN Y, et al. The underwater blast resistance of sacrificial claddings with stepwise graded cellular cores [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(2): 021602. DOI: 10.1115/1.4034922. [158] LIANG M Z, LI Z B, LU F Y, et al. Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials [J]. Composite Structures, 2017, 164: 170–179. DOI: 10.1016/j.compstruct.2016.12.065. [159] LAN X K, FENG S S, HUANG Q, et al. Blast response of continuous-density graded cellular material based on the 3D Voronoi model [J]. Defence Technology, 2018, 14(5): 433–440. DOI: 10.1016/j.dt.2018.06.003. [160] LIANG M Z, LI X Y, LIN Y L, et al. Compaction wave propagation in layered cellular materials under air-blast [J]. International Journal of Applied Mechanics, 2019, 11(1): 1950003. DOI: 10.1142/S1758825119500030. [161] PENG C X, TRAN P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings [J]. Composites Part B: Engineering, 2020, 188: 107773. DOI: 10.1016/j.compositesb.2020.107773. [162] NOVAK N, BOROVINŠEK M, AL-KETAN O, et al. Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures [J]. Composite Structures, 2022, 300: 116174. DOI: 10.1016/j.compstruct.2022.116174. [163] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/j.ijimpeng.2004.07.012. [164] CHEN A, KIM H, ASARO R J, et al. Non-explosive simulated blast loading of balsa core sandwich composite beams [J]. Composite Structures, 2011, 93(11): 2768–2784. DOI: 10.1016/j.compstruct.2011.05.027. [165] LI L, ZHANG Q C, ZHANG R, et al. A laboratory experimental technique for simulating combined blast and impact loading [J]. International Journal of Impact Engineering, 2019, 134: 103382. DOI: 10.1016/j.ijimpeng.2019.103382. [166] RADFORD D D, FLECK N A, DESHPANDE V S. The response of clamped sandwich beams subjected to shock loading [J]. International Journal of Impact Engineering, 2006, 32(6): 968–987. DOI: 10.1016/j.ijimpeng.2004.08.007. [167] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006. [168] 敬霖, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹芯梁的塑性动力响应 [J]. 爆炸与冲击, 2010, 30(6): 561–568. DOI: 10.11883/1001-1455(2010)06-0561-08.JING L, WANG Z H, ZHAO L M, et al. Dynamic plastic response of foam sandwich beams subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(6): 561–568. DOI: 10.11883/1001-1455(2010)06-0561-08. [169] 宋延泽, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹层板的动力响应 [J]. 爆炸与冲击, 2010, 30(3): 301–307. DOI: 10.11883/1001-1455(2010)03-0301-07.SONG Y Z, WANG Z H, ZHAO L M, et al. Dynamic response of foam sandwich plates subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(3): 301–307. DOI: 10.11883/1001-1455(2010)03-0301-07. [170] JING L, WANG Z H, NING J G, et al. The mechanical response of metallic sandwich beams under foam projectile impact loading [J]. Latin American Journal of Solids and Structures, 2011, 8(1): 107–120. DOI: 10.1590/S1679-78252011000100006. [171] JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B: Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024. [172] XIE Q H, JING L, WANG Z H, et al. Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact [J]. Composites Part B: Engineering, 2013, 44(1): 330–338. DOI: 10.1016/j.compositesb.2012.04.070. [173] JING L, WANG Z H, ZHAO L M. Response of metallic cylindrical sandwich shells subjected to projectile impact—experimental investigations [J]. Composite Structures, 2014, 107: 36–47. DOI: 10.1016/j.compstruct.2013.07.011. [174] JING L, WANG Z H, ZHAO L M. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B: Engineering, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035. [175] LI X, LI S Q, WANG Z H, et al. Response of aluminum corrugated sandwich panels under foam projectile impact—experiment and numerical simulation [J]. Journal of Sandwich Structures & Materials, 2017, 19(5): 595–615. DOI: 10.1177/1099636216630503. [176] LI X, ZHANG P W, LI S Q, et al. Dynamic response of aluminum honeycomb sandwich panels under foam projectile impact [J]. Mechanics of Advanced Materials and Structures, 2018, 25(8): 637–646. DOI: 10.1080/15376494.2017.1308595. [177] 叶楠, 张伟, 黄威, 等. PVC夹芯板在冲击载荷下的动态响应与失效模式 [J]. 爆炸与冲击, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09.YE N, ZHANG W, HUANG W, et al. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading [J]. Explosion and Shock Waves, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09. [178] YE N, ZHANG W, LI D C, et al. Dynamic response and failure of sandwich plates with PVC foam core subjected to impulsive loading [J]. International Journal of Impact Engineering, 2017, 109: 121–130. DOI: 10.1016/j.ijimpeng.2017.06.005. [179] XIAO D B, CHEN X Q, LI Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading—experiments and finite element analysis [J]. Materials & Design, 2019, 176: 107840. DOI: 10.1016/j.matdes.2019.107840. [180] LI Y, CHEN Z H, XIAO D B, et al. The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading [J]. International Journal of Impact Engineering, 2020, 137: 103442. DOI: 10.1016/j.ijimpeng.2019.103442. [181] 熊飞扬, 高松林, 李晓彬, 等. 局部冲击载荷作用下星形蜂窝夹芯梁的动态响应研究 [J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(2): 388–392. DOI: 10.3963/j.issn.2095-3844.2020.02.036.XIONG F Y, GAO S L, LI X B, et al. Study on dynamic response of star honeycomb sandwich beam under local impact load [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(2): 388–392. DOI: 10.3963/j.issn.2095-3844.2020.02.036. [182] CHEN Z H, LIU L W, GAO S L, et al. Dynamic response of sandwich beam with star-shaped reentrant honeycomb core subjected to local impulsive loading [J]. Thin-Walled Structures, 2021, 161: 107420. DOI: 10.1016/j.tws.2020.107420. [183] 张元瑞, 朱玉东, 郑志军, 等. 泡沫子弹冲击固支单梁的耦合分析模型 [J]. 力学学报, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223.ZHANG Y R, ZHU Y D, ZHENG Z J, et al. A coupling analysis model of clamped monolithic beam impacted by foam projectiles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223. [184] LI L, HAN B, HE S Y, et al. Shock loading simulation using density-graded metallic foam projectiles [J]. Materials & Design, 2019, 164: 107546. DOI: 10.1016/j.matdes.2018.107546. -