[1] | ZHANG Xiangru, CHENG Yuehua, WU Hao. Analysis on dynamic compressive behavior of concrete based on a 3D mesoscale model[J]. Explosion And Shock Waves, 2024, 44(2): 023102. doi: 10.11883/bzycj-2022-0541 |
[2] | ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449 |
[3] | LI Kewu, HU Qiushi, ZHENG Xianxu, LI Tao, FU Hua, TANG Wei. A theoretical model of PBXs’ tensile strength based on meso-structure parameters[J]. Explosion And Shock Waves, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514 |
[4] | XU Liuyun, ZHANG Yuandi. Mesoscale numerical simulation on dynamical response of concrete slabs to explosion loading[J]. Explosion And Shock Waves, 2022, 42(12): 123102. doi: 10.11883/bzycj-2022-0214 |
[5] | LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475 |
[6] | JIN Liu, HAO Huimin, ZHANG Renbo, DU Xiuli. Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures[J]. Explosion And Shock Waves, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401 |
[7] | GUO Ruiqi, REN Huiqi, LONG Zhilin, WU Xiangyun, JIANG Xiquan. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models[J]. Explosion And Shock Waves, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015 |
[8] | XIAO Dingjun, ZHU Zheming, PU Chuanjin, LU Lu, HU Rong. Study of testing method for dynamic initiation toughness of blue sandstone under blasting loading[J]. Explosion And Shock Waves, 2020, 40(2): 024101. doi: 10.11883/bzycj-2018-0516 |
[9] | ZHANG Yuhang, CHEN Qingqing, ZHANG Jie, WANG Zhiyong, LI Zhiqiang, WANG Zhihua. 3D mesoscale modeling method and dynamic mechanical properties investigation of concrete[J]. Explosion And Shock Waves, 2019, 39(5): 054205. doi: 10.11883/bzycj-2018-0408 |
[10] | ZHOU Lei, ZHU Zheming, WANG Meng, ZHOU Changlin, DONG Yuqing, YING Peng. Analysis on whole dynamical fracture process of tight sandstone tunnel model under impact loading[J]. Explosion And Shock Waves, 2019, 39(9): 095101. doi: 10.11883/bzycj-2018-0073 |
[11] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[12] | Deng Yongjun, Chen Xiaowei, Yao Yong, Yang Tao. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion And Shock Waves, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10 |
[13] | Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08 |
[14] | Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09 |
[15] | Yang Jing-rui, Zhang Cai-gui, Zhou Yan, Wang Qi-zhi. Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens[J]. Explosion And Shock Waves, 2014, 34(3): 264-271. doi: 10.11883/1001-1455(2014)03-0264-08 |
[16] | LIU Hai-feng, NING Jian-guo. A meso-mechanical constitutive model of concrete subjected to impact loading[J]. Explosion And Shock Waves, 2009, 29(3): 261-267. doi: 10.11883/1001-1455(2009)03-0261-07 |
[17] | ZHANG Feng-guo, QIN Cheng-sen, ZHOU Hong-qiang. Numerical meso-analysis on spalling damage[J]. Explosion And Shock Waves, 2006, 26(2): 125-128. doi: 10.11883/1001-1455(2006)02-0125-04 |