[1] | SHI Benjun, LI Jie, GUO Wei, XU Tianhan, XU Xiaohui, LI Gan, JIANG Haiming. Experimental study on explosion cratering and coupled ground shock in clay[J]. Explosion And Shock Waves, 2023, 43(6): 065101. doi: 10.11883/bzycj-2022-0445 |
[2] | HUANG Jie, LI Minghong, WU Tuozhan, ZONG Zhouhong. Experimental and numerical simulation studies on blast-induced craters in calcareous sand[J]. Explosion And Shock Waves, 2023, 43(10): 102203. doi: 10.11883/bzycj-2022-0556 |
[3] | JIANG Jianwei, PENG Jiacheng. Research advances in circumferential multiple linear explosively-formed projectile technology[J]. Explosion And Shock Waves, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017 |
[4] | XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187 |
[5] | LI Peng, LI Gang, YUAN Baohui, ZHOU Tao, SUN Xingyun. A rod-shaped explosively formed penetrator warhead[J]. Explosion And Shock Waves, 2018, 38(4): 883-890. doi: 10.11883/bzycj-2016-0356 |
[6] | LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078 |
[7] | LI Peng, LI Gang, YUAN Baohui, ZHOU Tao, JING Yidong. Influence of rotation on damage power of an explosively-formed rod-like penetrator[J]. Explosion And Shock Waves, 2018, 38(3): 616-621. doi: 10.11883/bzycj-2016-0263 |
[8] | LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055 |
[9] | LI Rui, LI Weibing, WANG Xiaoming, LI Wenbin. Effects of three-point initiation control parameters on formation of explosively-formed projectiles with fins[J]. Explosion And Shock Waves, 2018, 38(3): 501-508. doi: 10.11883/bzycj-2016-0272 |
[10] | Wan Wen -qian, Yu Dao-qiang, Peng Fei, Wang Wei -ming, Yang Tian -hai. Formation and terminal effect of an explosively -formed penetrator made by energetic materials[J]. Explosion And Shock Waves, 2014, 34(2): 235-240. doi: 10.11883/1001-1455(2014)02-0235-06 |
[11] | ZhaoChang-xiao, LongYuan, YuDao-qiang, . Formationofincisedmultipleexplosively-formedprojectilesand
theirarmor-piercingeffectagainststeeltarge[J]. Explosion And Shock Waves, 2013, 33(2): 186-193. doi: 10.11883/1001-1455(2013)02-0186-08 |
[12] | Wu Biao, Yang Jian-chao, Liu Rui-chao. Experimental study on perforation resistance of composite targets composed by granite block masonry and reinforced concrete plates[J]. Explosion And Shock Waves, 2013, 33(1): 73-78. doi: 10.11883/1001-1455(2013)01-0073-06 |
[13] | JI Chong, LONG Yuan, WAN Wen-qian, SHAO Lu-zhong. On anti-penetration and anti-perforation characteristics of high-strength steel fiber-reinforced concrete[J]. Explosion And Shock Waves, 2008, 28(2): 178-185. doi: 10.11883/1001-1455(2008)02-0178-08 |
[14] | DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves, 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05 |
[15] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
[16] | GUI Yu-lin, YU Chuan, LIU Cang-li, SUN Cheng-wei. 3D simulation of over-turned explosively formed projectile (EFP) with star-shaped fins[J]. Explosion And Shock Waves, 2005, 25(4): 313-318. doi: 10.11883/1001-1455(2005)04-0313-06 |