[1] | YANG Shilin, GAO Xudong, ZHANG Xianfeng, WANG Xiaofeng. Trajectory characteristics of elliptical cross-section projectile penetrating multi-layer spaced steel targets[J]. Explosion And Shock Waves, 2025, 45(3): 033303. doi: 10.11883/bzycj-2024-0096 |
[2] | WANG Shuai, DENG Zhifang, HE Liling, CHEN Hongyong, LI Jicheng, YAN Yixia, CHEN Gang. Influence of serrated configuration on transverse overload ofthe projectile penetrating with a small attack angle[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0250 |
[3] | LI Pengcheng, ZHANG Xianfeng, WANG Guiji, LIU Chuang, LIU Junwei, DENG Yuxuan, SHENG Qiang. Dynamic cratering process during penetration of rigid projectile into concrete target[J]. Explosion And Shock Waves, 2023, 43(9): 091402. doi: 10.11883/bzycj-2022-0512 |
[4] | JI Haibo, WANG Xin, ZHAO Zhenyu, ZHAO Zhongnan, LI Xue, HAN Jiatong, LU Tianjian. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness[J]. Explosion And Shock Waves, 2023, 43(6): 063302. doi: 10.11883/bzycj-2022-0231 |
[5] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[6] | YAO Xiongliang, WANG Zhi, YE Shanjun, WU Ziqi, WANG Zhikai. A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame[J]. Explosion And Shock Waves, 2021, 41(3): 033301. doi: 10.11883/bzycj-2020-0092 |
[7] | LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389 |
[8] | CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372 |
[9] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[10] | Xue Jianfeng, Shen Peihui, Wang Xiaoming. Experimental study and numerical simulation of projectile obliquely penetrating into concrete target[J]. Explosion And Shock Waves, 2017, 37(3): 536-543. doi: 10.11883/1001-1455(2017)03-0536-08 |
[11] | XuWei-fang, ZhangFang-ju, ChenYu-ze, . Experimentalstudyonpenetrationresponsesofthinconcretetargets[J]. Explosion And Shock Waves, 2013, 33(2): 169-174. doi: 10.11883/1001-1455(2013)02-0169-06 |
[12] | Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05 |
[13] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[14] | Lou-Jian-Feng, WANG Zheng, ZHU Jian-Shi, ZHANG Feng-Guo, HONG Tao. Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete[J]. Explosion And Shock Waves, 2010, 30(2): 178-182. doi: 10.11883/1001-1455(2010)02-0178-05 |
[15] | ZHU Jian-sheng, ZHAO Guo-zhi, DU Zhong-hua, WANG Xian-zhi. Mechanism of PELE projectiles perpendicularly impacting on thin target plates[J]. Explosion And Shock Waves, 2009, 29(3): 281-288. doi: 10.11883/1001-1455(2009)03-0281-08 |
[16] | PI Ai-guo, HUANG Feng-lei. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets[J]. Explosion And Shock Waves, 2008, 28(3): 252-260. doi: 10.11883/1001-1455(2008)03-0252-09 |
[17] | HUANG Feng-lei, ZHANG Lei-lei, DUAN Zhuo-ping. Shaped charge with large cone angle for concrete target[J]. Explosion And Shock Waves, 2008, 28(1): 17-22. doi: 10.11883/1001-1455(2008)01-0017-06 |
[18] | PI Ai-guo, HUANG Feng-lei. Dynamic behavior of a slender projectile on oblique penetrating into concrete target[J]. Explosion And Shock Waves, 2007, 27(4): 331-338. doi: 10.11883/1001-1455(2007)04-0331-08 |
[19] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
[20] | ZHANG De-hai, ZHU Fu-sheng, XING Ji-bo. Application of beam-particle model to the prolem of concrete penetration[J]. Explosion And Shock Waves, 2005, 25(1): 85-89. doi: 10.11883/1001-1455(2005)01-0085-05 |