CHEN Yong, TANG Ping, WANG Yu, YANG Shi-quan. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion And Shock Waves, 2005, 25(1): 90-96. doi: 10.11883/1001-1455(2005)01-0090-07
Citation:
CHEN Yong, TANG Ping, WANG Yu, YANG Shi-quan. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion And Shock Waves , 2005, 25(1): 90-96. doi: 10.11883/1001-1455(2005)01-0090-07
CHEN Yong, TANG Ping, WANG Yu, YANG Shi-quan. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion And Shock Waves, 2005, 25(1): 90-96. doi: 10.11883/1001-1455(2005)01-0090-07
Citation:
CHEN Yong, TANG Ping, WANG Yu, YANG Shi-quan. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion And Shock Waves , 2005, 25(1): 90-96. doi: 10.11883/1001-1455(2005)01-0090-07
Dynamic response analysis of rigid-plastic circular plate under underwater blast loading
1.
State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiaotong University, Shanghai 200040, China;
2.
Institute of Structural Mechanics, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China;
3.
Naval Ship Research Center, Beijing 100085
Abstract
The dynamic response of simply supporting rigid-plastic circular plate is analyzed using the plastic limit method along with Taylor plate theory. Parameters including maximum residual deformation field are obtained and compared with the FEM results. It is shown that the method is feasible for small deformation and short duration of loading. The influence of fluid-structure interaction and cavatation is also discussed.
References
Relative Articles
[1] XIE Jiang, PAN Hanyuan, JIANG Yilun, YANG Xiang, LI Xuan, GUO Delong, FENG Zhenyu. A study of directional explosion venting characteristics of anti-explosion vessel with a shear pin [J]. Explosion And Shock Waves, 2024, 44(7): 075101. doi: 10.11883/bzycj-2023-0321
[2] GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion [J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058
[3] WANG Jingui, HU Chao, LUO Feiyun, ZHANG Su. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration [J]. Explosion And Shock Waves, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327
[4] ZHANG Ya, LI Xiaobin, PENG Shuai, SHI Rui. Influences of adiabatic index γ on the parameters of different complex wave zones in a planar detonation [J]. Explosion And Shock Waves, 2021, 41(10): 102102. doi: 10.11883/bzycj-2020-0458
[5] SUN Song, WANG Mingyang, GAO Kanghua, ZHAO Tianhui, GUO Qiang. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure [J]. Explosion And Shock Waves, 2018, 38(2): 359-366. doi: 10.11883/bzycj-2016-0211
[6] CHEN Xiaokun, ZHANG Zijun, WANG Qiuhong, DENG Jun, LI Haitao, XU Qingfeng. Explosion characteristics of micro-sized aluminum dust in 20 L spherical vessel [J]. Explosion And Shock Waves, 2018, 38(5): 1130-1136. doi: 10.11883/bzycj-2017-0101
[7] Wu Songlin, Du Yang, Ou Yihong, Zhang Peili, Liang Jianjun. Experimental study for lateral gasoline-air venting explosion in cylindrical pipeline [J]. Explosion And Shock Waves, 2016, 36(5): 680-687. doi: 10.11883/1001-1455(2016)05-0680-08
[8] Sun Wei, Wang Zhirong, Ma Longsheng, Liu Minghan, Yang Chenjian. Influence factors of gas explosion venting in linked vessels [J]. Explosion And Shock Waves, 2016, 36(4): 457-464. doi: 10.11883/1001-1455(2016)04-0457-08
[9] Zhang Qing-wu, Jiang Jun-cheng, Yu Yuan, Cui Yi-hu. Prediction of peak pressure in the explosion- vented vessel with a venting duct based on support vector machine [J]. Explosion And Shock Waves, 2014, 34(6): 748-753. doi: 10.11883/1001-1455(2014)06-0748-06
[10] Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation [J]. Explosion And Shock Waves, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06
[11] YOU Ming-wei, JIANG Jun-cheng, YU Yuan, WANG Zhi-rong. Experimentalstudyonpremixedflammablegasexplosionventing
inlinkedvesselsunderthesameeffictiveventarea [J]. Explosion And Shock Waves, 2012, 32(2): 221-224. doi: 10.11883/1001-1455(2012)02-0221-04
[12] YU Jian-liang, YAN Xing-qing, LI Di. Pressurecharacteristicsindustexplosionreliefprocess
byusingareliefpipe [J]. Explosion And Shock Waves, 2012, 32(6): 669-672. doi: 10.11883/1001-1455(2012)06-0669-04
[13] SHI Xi-lin, WANG Zhi-rong, JIANG Jun-cheng. Explosion-vented processes for methane-air premixed gas in spherical vessels with venting pipes [J]. Explosion And Shock Waves, 2009, 29(4): 390-394. doi: 10.11883/1001-1455(2009)04-0390-05
Cited by Periodical cited type(13) 1. 褚怀保,陈璐阳,杨小林,王东辉,魏海霞,孙博. 含初始损伤饱水花岗岩的冲击破坏规律. 爆炸与冲击. 2025(01): 53-66 . 本站查看 2. 李庆文,潘创创,张学磊,钟宇奇,李玲,聂帆帆,李雯霞,徐梦娇. 基于颗粒流软件探究不同CFRP布层数对轴压煤圆柱能量演化的影响. 高压物理学报. 2025(04): 91-108 . 3. 温森,黄睿智,孔庆梅,李胜. 强度比对类复合岩样冲击破碎特征的影响. 科学技术与工程. 2024(06): 2495-2502 . 4. 王晓虎,于崇,邓守春,吴家骏. CGM水泥基灌浆料力学特性及动态本构模型. 辽宁工程技术大学学报(自然科学版). 2024(01): 38-47 . 5. 叶海旺,温颖,雷涛,王其洲,余梦豪,严立德,韦文蓬,李兴旺,王炯辉,赵明生. 不同品位石墨矿岩冲击破坏模式与能耗特性研究. 金属矿山. 2023(03): 65-72 . 6. 王伟,张宽,曹亚军,陈超,朱其志. 层状千枚岩各向异性力学特性与脆性评价研究. 岩土力学. 2023(04): 975-989 . 7. 王雁冰,付代睿. 层理角度对天然岩石材料动态断裂行为的影响研究. 岩石力学与工程学报. 2023(04): 849-867 . 8. 叶海旺,钱正昆,雷涛,温颖,李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理. 爆炸与冲击. 2023(12): 27-39 . 本站查看 9. 王成军,严晨. 采煤机振动冲击截割臂结构设计. 煤炭工程. 2022(06): 188-192 . 10. 李地元,高飞红,刘濛,马金银. 动静组合加载下含孔洞层状砂岩破坏机制探究. 岩土力学. 2021(08): 2127-2140 . 11. 胡建华,张涛,丁啸天,温观平,文增生,郭萌萌. 充-岩界面耦合体爆破动力响应机理. 爆炸与冲击. 2021(08): 164-178 . 本站查看 12. 李红鹏,陈秋松. 银山矿千枚岩破坏特征及地压分布规律分析. 黄金. 2021(09): 47-51 . 13. 邹宝平,罗战友,徐付军,丁浩楠,陶志刚,何满潮. 热–水–力耦合条件下深部砂岩冲击动力学特性试验研究. 岩石力学与工程学报. 2020(09): 1750-1761 .
Other cited types(6)
Proportional views