Volume 25 Issue 5
Dec.  2014
Turn off MathJax
Article Contents
GUAN Gong-shun, PANG Bao-jun, HA Yue, ZHANG Wei. Experimental investigation of high-velocity impact on aluminum alloy Whipple shield[J]. Explosion And Shock Waves, 2005, 25(5): 461-466. doi: 10.11883/1001-1455(2005)05-0461-06
Citation: GUAN Gong-shun, PANG Bao-jun, HA Yue, ZHANG Wei. Experimental investigation of high-velocity impact on aluminum alloy Whipple shield[J]. Explosion And Shock Waves, 2005, 25(5): 461-466. doi: 10.11883/1001-1455(2005)05-0461-06

Experimental investigation of high-velocity impact on aluminum alloy Whipple shield

doi: 10.11883/1001-1455(2005)05-0461-06
  • Publish Date: 2005-09-25
  • In order to get the damage mode and resist character of spacecraft shield structure by the high-velocity impact of space debris, a two-stage light gas gun with non-powder projection was used to launch Al-sphere projectiles impacting on aluminum alloy Whipple shield. By analyzing damage mode in different impact velocity ranges, the laws of penetration hole diameter and cratered area diameter depending on projectile diameter and impact velocity were observed. At the same time, the ballistic limit curves of the Whipple shield in a velocity range from 0.5 km/s to 5.5 km/s was obtained. Comparing to the predicted curve from Christiansen ballistic limit equation, the experimental minimum critical projectile diameter is slightly greater than the prediction.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2750) PDF downloads(364) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return