ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06
Citation:
ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06
ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06
Citation:
ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06
Integrated armors, including reactive armors, and composite ceramic armors, have better protection performances. According to the theory of the long rod impacting on composite armors and the momentum theorem for impact on reactive armors, a calculation model of long rod penetration into the integrated armors has been proposed in this paper. The model indicates that integrated armors with the same area density as the composite ceramic armors have better protection abilities, then lighter and better armors could be designed with this model.