Volume 26 Issue 1
Nov.  2014
Turn off MathJax
Article Contents
LIAO Hua-lin, LI Gen-sheng. Influences of the pore-fluid coupling effect on impact stress in rocks impacted by water jets[J]. Explosion And Shock Waves, 2006, 26(1): 84-90. doi: 10.11883/1001-1455(2006)01-0084-07
Citation: LIAO Hua-lin, LI Gen-sheng. Influences of the pore-fluid coupling effect on impact stress in rocks impacted by water jets[J]. Explosion And Shock Waves, 2006, 26(1): 84-90. doi: 10.11883/1001-1455(2006)01-0084-07

Influences of the pore-fluid coupling effect on impact stress in rocks impacted by water jets

doi: 10.11883/1001-1455(2006)01-0084-07
  • Publish Date: 2006-01-25
  • Based on the uncoupled fluid-structure interaction theory, a numerical model has been proposed to study the fracture mechanism of rocks under water jet impact. The jet flow characteristics and the stress distributions in the system are calculated with and without taking account of the pore-fluid coupling. The numerical results show if no pore-fluid coupling is considered, the maximum principal stress will be located at the impact surface and the radial distance from the impact center is directly proportional to the corresponding standoff distance, meanwhile the maximum shear stress occurs about half of the nozzle diameter downward the impact center. On the other hand, when water jets impinge on the saturated rocks in which fluid flows according to the Darcys law, the maximum principal stress occurs about 0.4 time of the nozzle diameter downward the impact center. The results can provided some ideas in considering the rock damage criterion for rock failure mechanism study under water jet impact.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2496) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return