[1] | YANG Tianhao, CHONG Tao, LI Tao, FU Hua, HU Haibo. GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction[J]. Explosion And Shock Waves, 2023, 43(6): 064101. doi: 10.11883/bzycj-2022-0238 |
[2] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[3] | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[4] | CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407 |
[5] | QIU Jiadong, LI Diyuan, LI Xibing, CHENG Tengjiao, LI Chongjin. Effect of pre-existing flaws on spalling fracture of granite[J]. Explosion And Shock Waves, 2018, 38(3): 665-670. doi: 10.11883/bzycj-2016-0310 |
[6] | LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055 |
[7] | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[8] | Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07 |
[9] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[10] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[11] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[12] | XIONG Jun, ZHOU Hai-bing, LIU Wen-tao, ZHANG Shu-dao, SUN Jin-shan. Spallation of steel tube driven by sliding detonation[J]. Explosion And Shock Waves, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05 |
[13] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[14] | CHEN Yong-tao, LI Qing-zhong, HU Hai-bo. Phase transition and spalling behavior of metal with low transition stress under high pressure[J]. Explosion And Shock Waves, 2008, 28(6): 503-506. doi: 10.11883/1001-1455(2008)06-0503-04 |
[15] | WANG Yong-gang, HE Hong-liang. Effect of tensile strain rate on spall fracture in 20 steel[J]. Explosion And Shock Waves, 2007, 27(3): 193-197. doi: 10.11883/1001-1455(2007)03-0193-05 |
[16] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[17] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[18] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[19] | LI Xue-mei, JIN Xiao-gang, LI Da-hong. The spall characteristics of cylindrical steel tube under inward explosion loading[J]. Explosion And Shock Waves, 2005, 25(2): 107-111. doi: 10.11883/1001-1455(2005)02-0107-05 |
[20] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |