DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves, 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05
Citation:
DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves , 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05
DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves, 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05
Citation:
DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves , 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05
DOP experimental study on EFP penetrating Al2O3 armor ceramic
1.
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract
The-depth-of-penetration (DOP) experiment of explosively-formed projectile (EFP) penetrating Al2O3 armor ceramic was performed, and the mass protection and difference protection coefficients and the variety of them along with the ceramic thickness were gained. The capability of 99Al2O3 armor ceramic resisting EFP penetration was evaluated,and the process and mechanisms of armor ceramic resisting EFP penetration was explained. Researched results show that the capability of ceramic resisting penetration can be improved by adding restriction.
References
Relative Articles
[1] QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion [J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400
[2] LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic response of nacre-like structure under explosion load [J]. Explosion And Shock Waves, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
[3] CHEN Xiaokun, LI Haitao, WANG Qiuhong, JIN Yongfei, DENG Jun, ZHANG Yanni. Antiknock analysis and structure optimization for coal mine cylindrical shell refuge capsule under gas explosion load [J]. Explosion And Shock Waves, 2018, 38(1): 124-132. doi: 10.11883/bzycj-2016-0248
[4] ZHOU Zhongxin, JIN Fengnian, YUAN Xiaojun, CHEN Hailong, ZHOU Jiannan, XU Ying, KONG Xinli. Dynamic response of underground arch structure under lateral point blast loads [J]. Explosion And Shock Waves, 2018, 38(3): 639-646. doi: 10.11883/bzycj-2016-0295
[5] Sun Hui-xiang, Xu Jin-yu, Zhu Guo-fu, Wen Ke-xu. Dynamic interaction between surrounding rock and underground structure subjected to blast loading [J]. Explosion And Shock Waves, 2013, 33(5): 519-524. doi: 10.11883/1001-1455(2013)05-0519-06
[6] ZHANG Xiao-peng, GE Fei, XING Huai-nian, JIN Li-qiang. Dynamicstressmeasurementofalargeexplosion-containmentvessel [J]. Explosion And Shock Waves, 2010, 30(1): 101-104. doi: 10.11883/1001-1455(2010)01-0101-04
[7] LI Xu-dong, LIU Kai-xin, YAN Hong-hao, LI Xiao-jie, WANG Shuai. Dynamicdamageprocessofanundergroundprotectivestructure
subjectedtoimpactloading [J]. Explosion And Shock Waves, 2010, 30(5): 541-545. doi: 10.11883/1001-1455(2010)05-0541-05
[8] HOU Hai-liang, ZHU Xi, GU Mei-bang. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion And Shock Waves, 2007, 27(1): 26-33. doi: 10.11883/1001-1455(2007)01-0026-08
[9] DU Xiu-li, LIAO Wei-zhang, TIAN Zhi-min, LI Liang. Dynamic response analysis of underground structures under explosion-induced loads [J]. Explosion And Shock Waves, 2006, 26(5): 474-480. doi: 10.11883/1001-1455(2006)05-0474-07
Proportional views