WANG Chun, ZHANG De-liang, JIANG Zong-lin. Numerical investigation of detonation sweeping an interface of inert gas and its decoupling[J]. Explosion And Shock Waves, 2006, 26(6): 556-561. doi: 10.11883/1001-1455(2006)06-0556-06
Citation:
WANG Chun, ZHANG De-liang, JIANG Zong-lin. Numerical investigation of detonation sweeping an interface of inert gas and its decoupling[J]. Explosion And Shock Waves, 2006, 26(6): 556-561. doi: 10.11883/1001-1455(2006)06-0556-06
WANG Chun, ZHANG De-liang, JIANG Zong-lin. Numerical investigation of detonation sweeping an interface of inert gas and its decoupling[J]. Explosion And Shock Waves, 2006, 26(6): 556-561. doi: 10.11883/1001-1455(2006)06-0556-06
Citation:
WANG Chun, ZHANG De-liang, JIANG Zong-lin. Numerical investigation of detonation sweeping an interface of inert gas and its decoupling[J]. Explosion And Shock Waves, 2006, 26(6): 556-561. doi: 10.11883/1001-1455(2006)06-0556-06
Numerical investigations were carried out to study the phenomena of detonation sweeping a contact surface of inert gas and its decoupling. The control-equations were solved with upwind TVD algorithm and elemental chemical reaction model, with the point-implicit used to overcome the numerical stiffness of chemical reaction source term. The results show that, when detonation sweeps a contact surface of inert gas, interactions of detonation, transmit shock and contact surface take place; in condition of high N2 dilution proportion, detonation is decoupled by rarefaction waves.