CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06
Citation:
CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06
CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06
Citation:
CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06
Considering the compressibility of an aluminum-alloy foam and the unavailability of the classic Taylor model to it, a theoretical model used to analyze the Taylor impact experiment of the aluminum-alloy foam was proposed based on some assumptions. The Taylor impact experiment was performed to validate the proposed model and to explore the dynamic mechanical properties of the aluminum-alloy foam. The experimental results show that the strain-rate sensitivity of the studied aluminum-alloy foam is not strong.