Hou Xiu-cheng, Jiang Jian-wei, Chen Zhi-gang. Numerical simulation on structure modules of effective jet[J]. Explosion And Shock Waves, 2014, 34(1): 35-40. doi: 10.11883/1001-1455(2014)01-0035-06
Citation:
|
JIANG Li, BAI Chun-hua, LIU Qing-ming. ExperimentalstudyonDDTprocessin3-phasesuspensions
ofgas/solidparticle/liquidmistmixture[J]. Explosion And Shock Waves, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0588-05
|
Hou Xiu-cheng, Jiang Jian-wei, Chen Zhi-gang. Numerical simulation on structure modules of effective jet[J]. Explosion And Shock Waves, 2014, 34(1): 35-40. doi: 10.11883/1001-1455(2014)01-0035-06
Citation:
|
JIANG Li, BAI Chun-hua, LIU Qing-ming. ExperimentalstudyonDDTprocessin3-phasesuspensions
ofgas/solidparticle/liquidmistmixture[J]. Explosion And Shock Waves, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0588-05
|
ExperimentalstudyonDDTprocessin3-phasesuspensions
ofgas/solidparticle/liquidmistmixture
- 1.
StateKeyLaboratoryofExplosionScienceandTechnology,
- 2.
BeijingInstituteofTechnology,Beijing100081,China;
More Information
- Corresponding author:
JIANG Li
- Publish Date:
2010-11-25
-
Abstract
Thedeflagrationtodetonationtransition(DDT)processesinstoichiometricthree-phasefuel/
airexplosives,whichincludenitromethane/aluminum powder/air,isopropylnitrate/aluminum
powder/airandethylether/aluminumpowder/air,werestudiedexperimentallybyusingthemultiphasecombustionanddetonationexperimentalsystem.
Andthecombustionanddetonationperformancesofdifferent3-
phasemixtureswereanalyzed.Thegeneralregulationofthe3-phasemixtureDDT
wasobtained.Theresultsshowthatthecombustionanddetonationperformancesofthe3-phasemixturevarywiththemassconcentration.
-
-
References
Relative Articles
[1] | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅱ): influence factors and design concept[J]. Explosion And Shock Waves, 2025, 45(1): 011101. doi: 10.11883/bzycj-2023-0463 |
[2] | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism[J]. Explosion And Shock Waves, 2024, 44(11): 111001. doi: 10.11883/bzycj-2023-0459 |
[3] | WANG Shuaifeng, WANG Rui, ZHAO Hui, GUO Zhihui. Design method for impact resistance of circular concrete-filled double-skin steel tubular members based on dynamic increase factor and equivalent single DoF system[J]. Explosion And Shock Waves, 2022, 42(10): 103302. doi: 10.11883/bzycj-2021-0467 |
[4] | GENG Shaobo, LUO Gan, CHEN Jialong, ZHAO Zhou. Effect of damping on equivalent static load dynamic factor of air blast load[J]. Explosion And Shock Waves, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036 |
[5] | CHEN Jianyun, CAO Xiangyu, XU Qiang, LI Jing. Dynamic responses of AP1000 reinforced concrete shield building subjected to contact explosion[J]. Explosion And Shock Waves, 2020, 40(4): 044201. doi: 10.11883/bzycj-2019-0151 |
[6] | FAN Yuan, CHEN Li, REN Huiqi, FENG Peng, FANG Qin. Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient[J]. Explosion And Shock Waves, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181 |
[7] | TANG Lizhong, LIU Tao, WANG Chun, CHEN Yuan, LI Diyuan, WEI Yongheng. Study on dynamic deformation modulus of rock under confining pressure unloading and dynamic loading[J]. Explosion And Shock Waves, 2018, 38(6): 1353-1363. doi: 10.11883/bzycj-2017-0131 |
[8] | SHI Zebin, ZHU Zheming, WANG Xiaomeng, WANG Xiong. A new testing method for mode Ⅰ crack initiation fracture toughness under middle-low speed impacts[J]. Explosion And Shock Waves, 2018, 38(6): 1247-1254. doi: 10.11883/bzycj-2017-0132 |
[9] | Ji Chong, Xu Quan-jun, Wan Wen-qian, Gao Fu-yin, Song Ke-jian. Dynamic responses of steel cylindrical shells under lateral explosion loading[J]. Explosion And Shock Waves, 2014, 34(2): 137-144. doi: 10.11883/1001-1455(2014)02-0137-08 |
[10] | Sun Hui-xiang, Xu Jin-yu, Zhu Guo-fu, Wen Ke-xu. Dynamic interaction between surrounding rock and underground structure subjected to blast loading[J]. Explosion And Shock Waves, 2013, 33(5): 519-524. doi: 10.11883/1001-1455(2013)05-0519-06 |
[11] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[12] | ZHAI Xi-mei, WANG Yong-hui. Dynamicresponseandexplosionreliefof
reticulatedshellunderblastloading[J]. Explosion And Shock Waves, 2012, 32(4): 404-410. doi: 10.11883/1001-1455(2012)04-0404-07 |
[13] | LI Yong-chi, YAO Lei, SHEN Jun, HU Xiu-zhang. Insulation effect of the cavity on stress wave[J]. Explosion And Shock Waves, 2005, 25(3): 193-199. doi: 10.11883/1001-1455(2005)03-0193-07 |
-
Cited by
Periodical cited type(7)
1. | 周刚,孔阳,崔洋洋,钱新明,傅砺烨,张琦. 城市地下排水管道中燃气爆炸及气-液两相耦合作用规律. 爆炸与冲击. 2024(03): 90-104 . 本站查看 | |
2. | 陈凯峰,杨克,纪虹,邢志祥,蒋军成. 粒径影响改性凹凸棒土抑制甲烷爆炸实验研究. 工程热物理学报. 2024(06): 1857-1862 .  | |
3. | 杨克,李雪瑞,纪虹,郑凯,邢志祥,蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验. 爆炸与冲击. 2024(07): 174-187 . 本站查看 | |
4. | 段玉龙,龙凤英,黄俊,俞树威,卜云兵. 水雾喷洒时间对滑移装置下甲烷爆炸特性影响. 安全与环境学报. 2023(01): 64-71 .  | |
5. | 段征,路长,班成伟,刘金刚,郭洪江,李明月. 封闭支管条件下ABC干粉抑爆机制研究. 火工品. 2023(02): 72-76 .  | |
6. | 王秋红,蒋夏夏,代爱萍. 基于Gaussian的甲烷爆炸微观反应计算分析. 中国安全生产科学技术. 2022(06): 178-184 .  | |
7. | 段玉龙,李元兵,杨燕铃,龙凤英,俞树威,黄俊,卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响. 高压物理学报. 2021(05): 182-188 .  | |
Other cited types(14)
-
Proportional views
-