ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydamsubjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07
Citation:
ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydam
subjectedtounderwaterexplosion[J]. Explosion And Shock Waves , 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07
ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydamsubjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07
Citation:
ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydam
subjectedtounderwaterexplosion[J]. Explosion And Shock Waves , 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07
Failuremodeanalysisofconcretegravitydam
subjectedtounderwaterexplosion
More Information
Corresponding author:
WANG Gao-hui
Publish Date:
2012-09-25
Abstract
StrainrateeffectofconcretedamwastakenintoconsiderationintheestablishmentofgravitydamfullycoupledmodelbyusingsoftwareLS-
DYNA.Numericalsimulationmethodwasusedto
studythedynamicresponseofthedamsubjectedtostrongunderwaterexplosionshockloading.The
possiblefailuremodeandcorrespondingfailuremechanismofconcretegravitydamwerediscussed.It
isfoundthatthefailuremodesofdamunderblastloadingdependnotonlyonitsowndynamiccharacteristics,
butalsoontheunderwaterdepth,theblastcenterdistanceandthebombdosage.Thehead
ofagravitydamisoneofweakpartsforantiknockperformance.Possiblefailuremodesofadamincludeexplosiontopitsatupstreamfaceconcretezoneswhichmeetexplosive,
explosion-inducedcollapseatcrestanddownstream,
brittlepunchingatjointoftheheadandupstreamplanesandnearthe
downstreamslopewithpenetratingcracks.
References
Relative Articles
[1] ZHU Wenyan, WANG Quan, ZHANG Jun, XU Xiaomeng, FANG Jingxian, LI Xuejiao. Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe [J]. Explosion And Shock Waves, 2024, 44(7): 075402. doi: 10.11883/bzycj-2024-0024
[2] YANG Fan, JIANG Chunxue, WANG Yuhui, LI Shiquan, WANG Jianping, ZHANG Guoqing. Influence of kerosene droplet diameters on the flow field of a two-phase rotating detonation engine [J]. Explosion And Shock Waves, 2023, 43(2): 022101. doi: 10.11883/bzycj-2022-0068
[3] GENG Shaobo, LUO Gan, CHEN Jialong, ZHAO Zhou. Effect of damping on equivalent static load dynamic factor of air blast load [J]. Explosion And Shock Waves, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036
[4] CHENG Shenshen, WANG Hao, XUE Shao, TAO Ruyi. Two-dimensional numerical simulation on gas-solid two-phase flow induced by combustion gas flow in a chamber based on a fifth-order WENO scheme [J]. Explosion And Shock Waves, 2021, 41(6): 062902. doi: 10.11883/bzycj-2020-0200
[5] SI Peng, QIU Ming, LIAO Zhenqiang, SONG Jie, MA Longxu. Numerical simulation of two-phase flow in a side spray gun considering piston reset motion [J]. Explosion And Shock Waves, 2021, 41(8): 084201. doi: 10.11883/bzycj-2020-0252
[6] GE Gaoyang, MA Yuan, HOU Shizhuo, XIA Zhenjuan, MA Hu, DENG Li, ZHOU Changsheng. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine [J]. Explosion And Shock Waves, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465
[7] WANG Zhen, WANG Tao, BAI Jingsong, XIAO Jiaxin. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave [J]. Explosion And Shock Waves, 2019, 39(4): 041407. doi: 10.11883/bzycj-2018-0342
[8] Wang Shan-shan, Zhang Yu-cheng, Wang Hao, Zhang Bo-zi, Tao Ru-yi. Two-phase flow in ignition process of consolidated charge bed within a large length-to-diameter ratio igniter tube [J]. Explosion And Shock Waves, 2013, 33(4): 444-448. doi: 10.11883/1001-1455(2013)04-0444-05
[9] CHEN Er-yun, ZHAO Gai-ping, YANG Ai-ling. Numericalinvestigationonflowfieldcharacteristicsoftoroidalshockwaves
focusinginacylindricaltube [J]. Explosion And Shock Waves, 2012, 32(3): 291-296. doi: 10.11883/1001-1455(2012)03-0291-06
[10] JI Xiao-song, WANG Hao, FENG Guo-zeng, HUANG Ming, WANG Shan-shan. Numericalsimulationofone-dimensionaltwo-phaseflow
formulti-pointignitiontechnologyinlong-chambercharge [J]. Explosion And Shock Waves, 2011, 31(6): 573-578. doi: 10.11883/1001-1455(2011)06-0573-06
[11] LIANG Yun-tao, ZENG Wen. Kineticcharacteristicsandinfluencingfactorsof
gasexplosioninducedbyshockwave [J]. Explosion And Shock Waves, 2010, 30(4): 370-376. doi: 10.11883/1001-1455(2010)04-0370-07
[12] YUAN Lai-Feng, RUI Xiao-Ting, WANG Guo-Ping, CHEN Tao. Application of DCD scheme to computation of two-phase flow interior ballistics for fractured propellant bed [J]. Explosion And Shock Waves, 2010, 30(3): 295-300. doi: 10.11883/1001-1455(2010)03-0295-06
[13] YUN Lai-feng, RUI Xiao-ting, HOU Ri-sheng, HE Bin. Calculation of launch dynamics with two-phase flow interior ballistic model for self-propelled artillery [J]. Explosion And Shock Waves, 2007, 27(1): 12-17. doi: 10.11883/1001-1455(2007)01-0012-06
[14] NI Zhi-jun, ZHOU Ke-dong, HE Lei, WANG Shu. A high-resolution numerical simulation of two-phase flow interior ballistics of the weapon with non traditional structure [J]. Explosion And Shock Waves, 2006, 26(5): 468-473. doi: 10.11883/1001-1455(2006)05-0468-06
Cited by Periodical cited type(5) 1. 吕晋贤,吴昊,卢永刚,陈德. 爆炸作用下建筑结构高效毁伤评估方法. 爆炸与冲击. 2025(01): 135-152 . 本站查看 2. 刘中辉,匡志平. 爆炸冲击波在扁平大空间内的传播规律. 同济大学学报(自然科学版). 2023(12): 1900-1909 . 3. 潘亮,潘阳,曹家豪,薛强,王耀斌,罗广宇. 装配式预应力槽型板在人防荷载作用下的抗爆性能研究. 西安建筑科技大学学报(自然科学版). 2019(01): 67-74 . 4. 徐维铮,吴卫国. 封闭空间爆炸载荷特性研究. 爆破. 2017(04): 40-45 . 5. 徐维铮,吴卫国. 爆炸波高精度数值计算程序开发及应用. 中国舰船研究. 2017(03): 64-74 .
Other cited types(0)
Proportional views