ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
Citation:
|
ZhangShe-rong, WangGao-hu. Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2013, 33(3): 255-263. doi: 10.11883/1001-1455(2013)03-0255-08
|
ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
Citation:
|
ZhangShe-rong, WangGao-hu. Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2013, 33(3): 255-263. doi: 10.11883/1001-1455(2013)03-0255-08
|
Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion
More Information
- Corresponding author:
WangGao-hui
- Publish Date:
2013-05-25
-
Abstract
Thedynamicresponsesofstructuresunderblastloadingaremuchmorecomplicatedthan
thoseunderotherloadingssuchasstaticandearthquakeloadings.Inordertofullyrealizetheblastresistancesofconcretegravitydams,
agreatmanynumericalsimulationswereimplementedbyusing
three-dimensionalnonlinearfiniteelementmodels.Theinfluencesofdamheightandwaterlevelbeforethedamsontheblastresistanceofthedamswereanalyzed,
andatheoreticalbasiswasprovided
forantiknockperformanceevaluationandprotectiondesign.Strainrateeffectsofconcretedamswere
takenintoconsiderationintheestablishmentofthefully-coupledmodelforthegravitydams.Forthis
kindofconcretegravitydams,numericalresultsindicatethattheblastresistanceofthelowdamsis
weakerthanthatofthehighdams,thatthewaterlevelbeforethedamsplaysanimportantroleonthe
antiknockperformancesofthedams,andthattheantiknockperformancesofthedamscanbeeffectivelyimprovedbyreducingthewaterlevel.
-
-
References
Relative Articles
[1] | Li Hai-tao, Zhu Shi-jian, Chen Zhi-jian, Mou Jin-lei. Characteristics of wall pressure and cavitation on the plate subjected to underwater explosion shockwaves at any angle of incidence[J]. Explosion And Shock Waves, 2014, 34(3): 354-360. doi: 10.11883/1001-1455(2014)03-0354-07 |
[2] | Liu Yun-long, Wang Yu, Zhang A-man. Whipping responses of double cylindrical shell structures to underwater explosion based on DAA2[J]. Explosion And Shock Waves, 2014, 34(6): 691-700. doi: 10.11883/1001-1455(2014)06-0691-10 |
[3] | ZHU Xi, MOU Jin-Lei, WANG Heng, ZHANG Zhen-Hua. Damage modes of stiffened plates subjected to underwater explosion load[J]. Explosion And Shock Waves, 2010, 30(3): 225-231. doi: 10.11883/1001-1455(2010)03-0225-07 |
[4] | SHANG Hai-Lin, ZHAO Feng, WANG Wen-Qiang, FU Hua. Three-dimensional discrete element simulation of hot spots in explosives under shock loading[J]. Explosion And Shock Waves, 2010, 30(2): 131-137. doi: 10.11883/1001-1455(2010)02-0131-07 |
[5] | YAN Feng, JIANG Fu-xing. Experiment on rock damage under blasting load[J]. Explosion And Shock Waves, 2009, 29(3): 275-280. doi: 10.11883/1001-1455(2009)03-0275-06 |
[6] | ZHANG Xu-hong, WANG Zhi-hua, ZHAO Long-mao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion And Shock Waves, 2009, 29(4): 356-360. doi: 10.11883/1001-1455(2009)04-0356-05 |
[7] | SONG Yan-ze, TIAN Jing-bang, ZHAO Long-mao, ZHENG Jin-yang. Dynamic responses of discrete multilayered wound ribbon vessels subjected to blast loading[J]. Explosion And Shock Waves, 2008, 28(4): 324-330. doi: 10.11883/1001-1455(2008)04-0324-07 |
[8] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
-
-
Proportional views
-