ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06
Citation:
|
ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06
|
ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06
Citation:
|
ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06
|
Mechanismofblasttraumatohumanthorax:Afiniteelementstudy
- 1.
SchoolofEnergyandPowerEngineering,NanjingUniversityofScienceandTechnology,
- 2.
Nanjing 210094,Jiangsu,China;
More Information
- Corresponding author:
ZhouJie
- Publish Date:
2013-05-25
-
Abstract
Asimplifiedthree-dimensionalfiniteelementmodelforhumanthoraxeswasestablishedand
thepropermaterialmodelsandparameterswereselectedforthedifferentthoraxorgans.Themechanicalinteractionoftheblastwavesandthethoraxwasexploredbytheself-
developedlocal-planewave
methodbasedonLS-DYNA.Accordingtothespeeddifferencesbetweenthedifferentorgans,the
traumadistributionswerepredicted.Thetraumadistributionsofthelungorganswereanalyzedwith
theaidofthevariationsofcompressive,tensileandshearstressesinthelungmodel.Thesimulated
resultsareconsistentwiththeanatomyexperimentalresultsandthecalculatedresultsbytheInjury
code.Sothemethodproposediseffectiveandprecisetosimulatethetraumacharacteristicsofhuman
thoraxessubjectedtoblastshockwavesanditcanprovideaneffectiveapproachtotheresearcheson
theblasttrauma.
-
-
References
Relative Articles
[1] | LUO Ming, ZHOU Yunbo, ZHANG Jincheng, ZHANG Ming, SU Yifei, SUN Xiaowang. Research on time interval of explosion impact on pelvis and lumbar spine injury[J]. Explosion And Shock Waves, 2021, 41(1): 015902. doi: 10.11883/bzycj-2020-0059 |
[2] | LIU Erwei, XU Shengli. Influence of ignition criterion and dilution gas on ignition delay of ethylene[J]. Explosion And Shock Waves, 2020, 40(6): 062101. doi: 10.11883/bzycj-2019-0402 |
[3] | SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309 |
[4] | Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075 |
[5] | Hu Hongwei, Yan Jiajia, Chen Lang, Guo Wei, Song Pu. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion And Shock Waves, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05 |
[6] | Tan Ru-mei, Zhang Qi, Zhang Bo. Effects of ignition delay time on characteristic parameters of aluminum dust explosion[J]. Explosion And Shock Waves, 2014, 34(1): 17-22. doi: 10.11883/1001-1455(2014)01-0017-06 |
[7] | Deng Fei, Zhang Xiang-yan, Liu Ning. Influences of ignition process and initial conditions on interior ballistic characteristics of combustion light gas gun[J]. Explosion And Shock Waves, 2013, 33(5): 551-555. doi: 10.11883/1001-1455(2013)05-0551-05 |
-
-
Proportional views
-