Citation: | Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05 |
[1] |
Bjerketvedt D, Bakke J R, van Wingerden K. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, 52(1): 1-150. doi: 10.1016/S0304-3894(97)81620-2
|
[2] |
Peraldi O, Knystautas R, Lee J H. Criteria for transition to detonation in tubes[J]. Symposium(International)on Combustion, 1988, 21(1): 1629-1637.
|
[3] |
Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1): 83-89. doi: 10.1016/j.ssci.2011.07.005
|
[4] |
曲志明.掘进巷道瓦斯爆炸数值及实验分析[J].湖南科技大学学报:自然科学版, 2008, 23(2): 9-14.
Qu Zhi-ming. Numerical and experimental analysis of gas explosion in the excavation[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2008, 23(2): 9-14.
|
[5] |
Popat N R, Catlin C A, Arntzenb B J. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996, 45(1): 1-25. doi: 10.1016/0304-3894(95)00042-9
|
[6] |
Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and Auto-ReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 280-287.
|
[7] |
Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3): 233-247. doi: 10.1016/S0304-3894(02)00161-9
|
[8] |
AutoReaGas: Reactive gas dynamics and blast analysis software user manual: Version 3.1[M]. Century Dynamics and TNO, 2002.
|
[9] |
AutoReaGas: Interactive software theory manual[M]. Century Dynamics and TNO, 2002.
|
[10] |
吴兵.矿井半封闭空间瓦斯爆燃过程热动力学研究[D].北京: 中国矿业大学(北京), 2003.
|
[1] | FANG Houlin, LU Qiang, GUO Quanshi, LI Guoliang, LIU Cunxu, TAO Sihao, ZHANG Dezhi. Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion[J]. Explosion And Shock Waves, 2024, 44(8): 081444. doi: 10.11883/bzycj-2024-0003 |
[2] | WANG Weirong, CHEN Shuyang, WANG Xuejun, ZHAO Xinwen, HUANG Shizhang, LI Xinzhu, WU Qiang. An improved Asay foil method for measuring areal density of ejecta under complex loading conditions[J]. Explosion And Shock Waves, 2024, 44(3): 034101. doi: 10.11883/bzycj-2023-0089 |
[3] | MA Chenyang, WU Li, SUN Miao. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting[J]. Explosion And Shock Waves, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436 |
[4] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[5] | LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428 |
[6] | WANG Zhao, WU Zutang, WEN Guangrui, YANG Jun, CHEN Liqiang, SHI Guokai. A fiber optic pressure sensing technology based on thin diaphragm structure[J]. Explosion And Shock Waves, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091 |
[7] | JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294 |
[8] | HONG yong, MA Honghao, SHEN Zhaowu, REN Lijie, CUI Yu, ZHAO Kai. Research and application on efficient rock blasting based on circular free surface[J]. Explosion And Shock Waves, 2018, 38(1): 98-105. doi: 10.11883/bzycj-2016-0176 |
[9] | Wen Xuefeng, Wang Jian, Wang Xiaoyan, Hu Yang, Chen Yongtao. Discharging mechanism of pulse signal electric probe conducted by micro-jetting[J]. Explosion And Shock Waves, 2017, 37(5): 887-892. doi: 10.11883/1001-1455(2017)05-0887-06 |
[10] | Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings[J]. Explosion And Shock Waves, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06 |
[11] | Liu Xian-jun, Wang Xiao-long, Li Si-zhong, Zhong Wei-zhou, Zhou Ben-quan. Device for ejecting water column by inertia effect based on load technology of gas gun[J]. Explosion And Shock Waves, 2014, 34(3): 272-277. doi: 10.11883/1001-1455(2014)03-0272-06 |
[12] | MINGFu-ren, ZHANGA-man, YANG Wen-shan. Three-dimensionalsimulationsonexplosiveloadcharacteristicsof underwaterexplosionnearfreesurface[J]. Explosion And Shock Waves, 2012, 32(5): 508-514. doi: 10.11883/1001-1455(2012)05-0508-07 |
[13] | LIU Ying, ZHANG Xin-chun. Influence of cell micro-topology on the in-plane dynamic properties of honeycombs[J]. Explosion And Shock Waves, 2008, 28(6): 494-502. doi: 10.11883/1001-1455(2008)06-0494-09 |