Volume 34 Issue 1
Mar.  2014
Turn off MathJax
Article Contents
Zhang Bo-yi, Wang Wei, Wu Gao-hui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion And Shock Waves, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07
Citation: Zhang Bo-yi, Wang Wei, Wu Gao-hui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion And Shock Waves, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07

Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam

doi: 10.11883/1001-1455(2014)01-0028-07
Funds:  Supported by the National Natural Science Foundation of China (51108141)
  • Received Date: 2012-08-27
  • Rev Recd Date: 2013-02-04
  • Publish Date: 2014-01-25
  • The fly-ash cenospheres-reinforced 1199Al-matrix composite foam was prepared by the pressure infiltration technique, in which containing the 80-μm-sized fly-ash cenospheres with the volume fraction of 0.4.Dynamic compression experiments were performed with a split Hopkinson pressure bar(SHPB)setup to investigate the dynamic compression properties and energy-absorption capability of the prepared composite foam in the strain rate range from 1 700s-1 to 2 900s-1.And the fractured surfaces of the compressed specimens were observed by a scanning electron microscopy.Moreover, the energy-absorption capability and the deformation mechanism of the prepared composite faom in dynamic compressions were compared with those of it in quasi-static compressions by an Instron 5569 tensile machine.The results show that the cenospheres-reinforced 1199Al-matrix composite foam is a strain-rate sensitive material.Its flow stress and plastic strain at the high strain rates are obviously higher than those under the quasi-static conditions.And the strain-rate hardening effect can more markedly influence the flow stress of the cenospheres-reinforced 1199Al-matrix composite foam than the strain-hardening effect.Furthermore, there are some differences between the quasi-static and dynamic compressive deformation mechanisms in the cenospheres-reinforced 1199Al-matrix composite foam.Under dynamic loadings, the fly-ash cenospheres in the cenospheres-reinforced 1199Al-matrix composite foam can be simultaneously compressed when the Al-matrix material is being filled, and there lies a good coordinate deformation capacity between the components.
  • loading
  • [1]
    Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications[M]. Wiley-Vch, 2002.
    [2]
    Ahmaruzzaman M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. doi: 10.1016/j.pecs.2009.11.003
    [3]
    Dou Z Y, Jiang L T, Wu G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10): 945-948. doi: 10.1016/j.scriptamat.2007.07.024
    [4]
    Daoud A. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 618-625.
    [5]
    Rohatgi P K, Daoud A, Schultz B F, et al. Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 883-896.
    [6]
    Sun D X, Zhao Y Y. Static and dynamic energy absorption of Al foams produced by the sintering and dissolution process[J]. Metallurgical and Materials Transactions B, 2003, 34(1): 69-74. doi: 10.1007/s11663-003-0056-3
    [7]
    Tao X F, Zhao Y Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles[J]. Scripta Materialia, 2009, 61(5): 461-464. doi: 10.1016/j.scriptamat.2009.04.045
    [8]
    Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting[J]. Journal of Composite Materials, 2007, 41(17): 2105-2117. doi: 10.1177/0021998307074132
    [9]
    Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 279-288. doi: 10.1016/j.compositesa.2008.12.006
    [10]
    Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam[J]. Materials Science and Engineering: A, 2009, 507(1/2): 102-109.
    [11]
    Mondal D P, Goel M D, Das S. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam[J]. Materials and Design, 2009, 30(4): 1268-1274. doi: 10.1016/j.matdes.2008.06.059
    [12]
    San Marchi C, Cao F, Kouzeli M, et al. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum[J]. Materials Science and Engineering: A, 2002, 337(1/2): 202-211.
    [13]
    Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering and Science, 1981, 21(15): 1010-1014. doi: 10.1002/pen.760211505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (3820) PDF downloads(553) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return