Citation: | Zhang Bo-yi, Wang Wei, Wu Gao-hui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion And Shock Waves, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07 |
[1] |
Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications[M]. Wiley-Vch, 2002.
|
[2] |
Ahmaruzzaman M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. doi: 10.1016/j.pecs.2009.11.003
|
[3] |
Dou Z Y, Jiang L T, Wu G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10): 945-948. doi: 10.1016/j.scriptamat.2007.07.024
|
[4] |
Daoud A. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 618-625.
|
[5] |
Rohatgi P K, Daoud A, Schultz B F, et al. Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 883-896.
|
[6] |
Sun D X, Zhao Y Y. Static and dynamic energy absorption of Al foams produced by the sintering and dissolution process[J]. Metallurgical and Materials Transactions B, 2003, 34(1): 69-74. doi: 10.1007/s11663-003-0056-3
|
[7] |
Tao X F, Zhao Y Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles[J]. Scripta Materialia, 2009, 61(5): 461-464. doi: 10.1016/j.scriptamat.2009.04.045
|
[8] |
Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting[J]. Journal of Composite Materials, 2007, 41(17): 2105-2117. doi: 10.1177/0021998307074132
|
[9] |
Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 279-288. doi: 10.1016/j.compositesa.2008.12.006
|
[10] |
Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam[J]. Materials Science and Engineering: A, 2009, 507(1/2): 102-109.
|
[11] |
Mondal D P, Goel M D, Das S. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam[J]. Materials and Design, 2009, 30(4): 1268-1274. doi: 10.1016/j.matdes.2008.06.059
|
[12] |
San Marchi C, Cao F, Kouzeli M, et al. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum[J]. Materials Science and Engineering: A, 2002, 337(1/2): 202-211.
|
[13] |
Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering and Science, 1981, 21(15): 1010-1014. doi: 10.1002/pen.760211505
|
1. | 张博一,高金涛,王理,张箭,王伟,武高辉. 粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型. 复合材料学报. 2021(08): 2655-2665 . ![]() | |
2. | 张博一,赵威,王理,王伟,武高辉,张强. 泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应. 爆炸与冲击. 2017(04): 600-610 . ![]() | |
3. | 汤传平,张元会,王俊,刘伟庆. GFRP管约束泡沫柱抗侧向冲击数值模拟. 南京工业大学学报(自然科学版). 2017(05): 92-96 . ![]() | |
4. | 张博一,翟东宪,孙建,王伟. 内置铝基复合泡沫材料抗爆门动力响应模拟研究. 兵工学报. 2014(S2): 263-267 . ![]() |