Citation: | Ma Xin, Chen Lang, Lu Feng, Wu Jun-ying. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions[J]. Explosion And Shock Waves, 2014, 34(1): 67-74. doi: 10.11883/1001-1455(2014)01-0067-08 |
[1] |
Semenov N N. Theories of combustion process[J]. Physics: Z, 1928, 48: 571-582. doi: 10.1007/BF01340021
|
[2] |
Jones D A, Parker R P. Heat flow calculations for the small-scale cook-off bomb test[R]. AD-A236829, 1991.
|
[3] |
Wang Pei, Chen Lang, Wang Xiao-feng, et al. Cook-off test and numerical simulation for explosive heated by fire[J]. Journal of Beijing Institute of Technology, 2009, 18(2): 146-151.
|
[4] |
Williams M R, Matei M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. Part 1: Time to explosion and apparent activation energy[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435-441. doi: 10.1002/prep.200600058
|
[5] |
陈朗, 马欣, 黄毅民, 等.炸药多点测温烤燃实验和数值模拟[J].兵工学报, 2011, 32(10): 1230-1236.
Chen Lang, Ma Xin, Huang Yi-min, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive[J]. Acta Armamentarii, 2011, 32(10): 1230-1236.
|
[6] |
McGuire R R, Tarver C M. Chemical decomposition models for the thermal explosion of confined HMX, TATB, RDX and TNT explosives[C]//Proceedings of the 7th International Symposium on Detonation. Anapolis, MD, USA, 1981: 1-8.
|
[7] |
Tarver C M, Koerner J G. Effects of endothermic binders on times to explosion of HMX-and TATB-based plastic bonded explosives[J]. Journal of Energetic Materials, 2008, 26(1): 1-28.
|
[8] |
Tarver C M. Effects of exothermic binders on times to explosion of HMX-plastic bonded explosives[C]//Proceedings of the 14th International Symposium on Detonation. Coeur d'Alene Resort, Idaho, 2010: 861-870..
|
[9] |
Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of cyclotrimethylenetrinitraminebased explosives: Model comparison with experiment[J]. Journal of Applied Physics, 2005, 97, 083504: 1-11.
|
[10] |
Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of octahydrotetranitrotetrazinebased explosives: Model comparison with experiment[J]. Journal of Applied Physics, 2006, 100, 073515: 1-9.
|
[11] |
Dickson P M, Asay B W, Henson B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501[C]//Shock Compression of Condensed Matter-1999.2000: 837-840.
|
[12] |
Perry W L, Gunderson J A, Dickson P M. Application of a reversible four-step HMX kinetic model to an impactinduced friction ignition problem[C]//The 14th International Detonation Symposium. Coeur d'Alene Resort, Idaho, 2010.
|
[13] |
Land T A, Siekhaus W J, Foltz M F, et al. Condensed-phase thermal decomposition of TATB investigated by AFM and STMBMS[C]//The 10th International Detonation Symposium. Boston, MA, 1993.
|
[1] | TAN Yi, YANG Shuyi, SUN Yaobing, GUO Xiaojun. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion And Shock Waves, 2024, 44(1): 013104. doi: 10.11883/bzycj-2022-0531 |
[2] | MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344 |
[3] | LIU Sijia, CHEN Li, CAO Mingjin, ZHOU Donglei, FAN Yuan, CHEN Xin. Study on mechanical properties of the kinked rebar under high speed dynamic tension[J]. Explosion And Shock Waves, 2022, 42(5): 053101. doi: 10.11883/bzycj-2021-0328 |
[4] | ZHU Lei, LIU Yang, MENG Jinhui, LI Zhiguo, HU Jianbo, LI Guoping, WANG Yonggang. Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227 |
[5] | WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374 |
[6] | MA Shengguo, WANG Zhihua. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys[J]. Explosion And Shock Waves, 2021, 41(11): 111101. doi: 10.11883/bzycj-2020-0293 |
[7] | GAO Yukui, TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion And Shock Waves, 2021, 41(4): 041401. doi: 10.11883/bzycj-2020-0342 |
[8] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[9] | YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256 |
[10] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[11] | Chen Hua, Zhou Haibing, Liu Guozhao, Sun Zhanfeng, Zhang Shudao. Bayesian calibration for parameters of JWL equation of state in cylinder test[J]. Explosion And Shock Waves, 2017, 37(4): 585-590. doi: 10.11883/1001-1455(2017)04-0585-06 |
[12] | Li Song-yan, Zheng Zhi-jun, Yu Ji-lin. Energy-absorbing structure design and crashworthiness analysis of high-speed trains[J]. Explosion And Shock Waves, 2015, 35(2): 164-170. doi: 10.11883/1001-1455(2015)02-0164-07 |
[13] | TAO Jun-lin, QIN Li-bo, LI Kui, LIU Dan, JIA Bin, CHEN Xiao-wei, CHEN Gang. Experimentalinvestigationondynamiccompressionmechanical performanceofconcreteathightemperature[J]. Explosion And Shock Waves, 2011, 31(1): 101-106. doi: 10.11883/1001-1455(2011)01-0101-06 |
[14] | WANG Bao-zhen, ZHEN Yu-xuan, HU Shi-sheng. Dynamictensilepropertiesofporcineham muscle[J]. Explosion And Shock Waves, 2010, 30(5): 449-455. doi: 10.11883/1001-1455(2010)05-0449-07 |
[15] | XIE Ruo-ze, HU Wen-jun, CHEN Cheng-jun, PAN Xiao-xia, HE Peng, ZHANG Fang-ju, CHEN Jie. DynamiccompressivemechanicalpropertiesofV-5Cr-5Ti atroomtemperature[J]. Explosion And Shock Waves, 2010, 30(6): 641-646. doi: 10.11883/1001-1455(2010)06-0641-06 |
[16] | DOU Jin-long, WANG Xu-guang, LIU Yun-chuan. Dynamic mechanical behaviors of poplar wood[J]. Explosion And Shock Waves, 2008, 28(4): 367-371. doi: 10.11883/1001-1455(2008)04-0367-05 |
[17] | CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06 |
[18] | MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, JI Guang-fu, ZHU Wei, XIAO He-ming. Simulation study on structure and property of HMX-based multi-components PBX[J]. Explosion And Shock Waves, 2007, 27(2): 109-115. doi: 10.11883/1001-1455(2007)02-0109-07 |
[19] | WANG Zhi-hua, CAO Xiao-qing, MA Hong-wei, ZHAO Long-mao, YANG Gui-tong. Experimental studies on the dynamic compressive properties of open-celled aluminum alloy foams[J]. Explosion And Shock Waves, 2006, 26(1): 46-52. doi: 10.11883/1001-1455(2006)01-0046-07 |
[20] | XIE Ruo-ze, ZHANG Fang-ju, YAN Yi-xia, TIAN Chang-jin, LI Yu-long, CHEN Yu-ze, LI Si-zhong, TAO Jun-lin. High-temperature SHPB experimental technique and its application[J]. Explosion And Shock Waves, 2005, 25(4): 330-334. doi: 10.11883/1001-1455(2005)04-0330-05 |
1. | 吴凯,王显会,周云波,毕政,李明星. 基于可靠性的车辆防护组件优化. 爆炸与冲击. 2021(03): 142-151 . ![]() |