Volume 34 Issue 1
Mar.  2014
Turn off MathJax
Article Contents
Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong. Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles[J]. Explosion And Shock Waves, 2014, 34(1): 80-86. doi: 10.11883/1001-1455(2014)01-0080-07
Citation: Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong. Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles[J]. Explosion And Shock Waves, 2014, 34(1): 80-86. doi: 10.11883/1001-1455(2014)01-0080-07

Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles

doi: 10.11883/1001-1455(2014)01-0080-07
Funds:  Supported by the National Natural Science Foundation of China (51078116)
  • Received Date: 2012-06-11
  • Rev Recd Date: 2013-02-07
  • Publish Date: 2014-01-25
  • Based on the nonlinear explicit dynamic finite element program LS-DYNA and the multi-material Euler algorithm, the shock wave propagations were numerically simulated for the two explosion resources of the TNT dynamite and the acetylene-air gaseous mixture in free air field, respectively.The overpressures of the shock waves and the propagation principles were compared between the two blast-loading methods.Based on the equivalent-explosion energy, a formula for calculating the nominal scale distance of gas explosion was obtained in terms of overpressure.The results show that the Euler method can be used to calculate the propagation process of two kinds of explosion sources and the numerical results agree well with the ones based on the empirical equations.With the increasing of the propagation distances, the overpressures decrease sharply and the overpressure relative error between the two load methods decreases gradually.When the shock wave overpressure was lower than 0.5MPa, the acetylene-air gaseous mixture can replace the chemical dynamite for generating blast shock waves by the large nuclear blast load generator.
  • loading
  • [1]
    欧进萍, 张春巍, 张晓漪, 等.大型模爆器综合试验系统研制、改造与应用[C]//中国土木工程学会防护工程分会第十次学术年会.乌鲁木齐, 2006.
    [2]
    张春巍.结构抗爆抗冲击与振动控制的若干问题研究[R].哈尔滨: 哈尔滨工业大学, 2007.
    [3]
    李生娟, 毕明树, 章正军, 等.气体爆炸研究现状及发展趋势[J].化工装备技术, 2002, 23(6): 15-19. doi: 10.3969/j.issn.1007-7251.2002.06.004

    Li Sheng-juan, Bi Ming-shu, Zhang Zheng-jun, et al. Gas explosion present research situation and development trend[J]. Chemical Equipment Technology, 2002, 23(6): 15-19. doi: 10.3969/j.issn.1007-7251.2002.06.004
    [4]
    Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99: 235-394. doi: 10.1016/0045-7825(92)90042-I
    [5]
    LS-DYNA keyword user's manual: Version 971[M]. Livermore California: Livermore Software Technology Corporation, 2006.
    [6]
    张秀华.气爆炸冲击作用下钢框架抗爆性能试验研究与数值模拟[D].哈尔滨: 哈尔滨工业大学, 2011.
    [7]
    Smith P D, Hetherington J G. Blast and ballistic loading structures[M]. Butterworth-Heinemann Ltd, 1994: 30-166.
    [8]
    Mays G C, Smith P D. Blast effects on buildings[M]. London: Thomas Telford Publications, 1995: 24-50.
    [9]
    Baker W E. Explosions in air[M]. Austin, TX: University of Texas Press, 1973: 7-15.
    [10]
    王飞, 朱立新, 顾文彬, 等.基于ALE算法的空气冲击波绕流数值模拟研究[J].工程爆破, 2002, 8(2): 13-16. doi: 10.3969/j.issn.1006-7051.2002.02.004

    Wang Fei, Zhu Li-xin, Gu Wen-bin, et al. Numerical simlation shock wave around-flow on basis of ALE algorithm[J]. Engineering Blasting, 2002, 8(2): 13-16. doi: 10.3969/j.issn.1006-7051.2002.02.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (4670) PDF downloads(755) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return