Volume 34 Issue 2
May  2014
Turn off MathJax
Article Contents
Zhai Chao -jiao, Xia Tang -dai, Chen Wei -yun, Du Guo -qing. Transient response of cavity in infinite elastic soil to anti -plane impact[J]. Explosion And Shock Waves, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07
Citation: Zhai Chao -jiao, Xia Tang -dai, Chen Wei -yun, Du Guo -qing. Transient response of cavity in infinite elastic soil to anti -plane impact[J]. Explosion And Shock Waves, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07

Transient response of cavity in infinite elastic soil to anti -plane impact

doi: 10.11883/1001-1455(2014)02-0209-07
More Information
  • Corresponding author: Zhai Chao-jiao, xinqingkawayi@126.com
  • Received Date: 2012-09-17
  • Rev Recd Date: 2013-03-04
  • Publish Date: 2014-03-25
  • To explore the transient response of a cylindrical cavity in an infinite elastic soil body to sudden anti -plane impact, the general analytical expressions were given for the displacement and stress of the soil, respectively, by using the Laplace transform.And the corresponding numerical solutions were presented.In the time domain, the dynamic responses of the infinite elastic soil to the impact load along the axial of the cavity were analyzed, and the computed results were compared with those from the numerical inversion proposed by Durbin and the static results.And there are some understandings of shear wave propagation as follows: the stress and displacement of the soil can increase instantaneously when the shear wave arrives here, then decrease gradually and tend to the static values; the shear wave spreads outward and attenuates along the radial directions, the attenuation rate is lower than that under static conditions.
  • loading
  • [1]
    Pao Yih-hsing, Mow C C. Diffraction of elastic waves and dynamic stress concentrations[M]. New York, USA: Adam Hilger Limited, 1973.
    [2]
    Lee J, Mal A K. A volume integral equation technique for multiple scattering problems in elastodynamics[J]. Applied Mathematics and Computation, 1995, 67(1/2/3): 135-159. https://www.sciencedirect.com/science/article/pii/009630039400057B
    [3]
    Davis C A, Lee V W, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 395-410. doi: 10.1002/eqe.14
    [4]
    Iakovlev S. Interaction of a spherical shock wave and a submerged fluid-filled circular cylindrical shell[J]. Journal of Sound and Vibration, 2002, 255(4): 615-633. doi: 10.1006/jsvi.2001.4181
    [5]
    Manolis G D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM[J]. Journal of Sound and Vibration, 2003, 266(2): 281-305. https://www.sciencedirect.com/science/article/pii/S0022460X03001755
    [6]
    Eason G. Propagation of waves from spherical and cylindrical cavities[J]. The Journal of Applied Mathematics and Physics, 1963, 14(1): 12-23. doi: 10.1007/BF01601142
    [7]
    Eason G. The propagation of waves from a cylindrical cavity[J]. Journal of Composite Materials, 1973, 7(1): 90-99. doi: 10.1177/002199837300700107
    [8]
    张庆元, 战人瑞.爆轰载荷作用下球形空腔的动力响应[J].爆炸与冲击, 1994, 14(2): 182-185. http://www.bzycj.cn/article/id/10625

    Zhang Qing-yuan, Zhan Ren-rui. Dynamic response of a spherical cavity subjected to blast loads[J]. Explosion and Shock Waves, 1994, 14(2): 182-185. http://www.bzycj.cn/article/id/10625
    [9]
    刘国利, 赵会滨, 许贻燕.阶跃SH波作用下半圆形凹陷地形的瞬态反应:长期解[J].地震工程与工程振动, 1995, 15(1): 92-99.

    Liu Guo-li, Zhao Hui-bin, Xu Yi-yan. Transient response of semi-circular canyon under step SH wave: Long term solution[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 92-99.
    [10]
    Herman H, Klosner J M. Transient response of a periodically supported cylindrical shell Immersed in a fluid medium[J]. Journal of Applied Mechanics, 1965, 32(3): 562-568. doi: 10.1115/1.3627259
    [11]
    Geers T L. Excitation of an elastic cylindrical shell by a transient acoustic wave[J]. Journal of Applied Mechanics, 1969, 36(3): 459-469. doi: 10.1115/1.3564702
    [12]
    杨峻, 宫全美, 吴世明, 等.饱和土体中圆柱形孔洞的动力分析[J].上海力学, 1996, 17(1): 37-45.

    Yang Jun, Gong Qun-mei, Wu Shi-ming, et al. Dynamic analysis of cylindrical holes in saturated soil[J]. Shanghai Mechanics, 1996, 17(1): 37-45.
    [13]
    Forrestal M J, Sagartz M J. Radiated pressure in an acoustic medium produced by pulsed cylindrical and spherical shells[J]. Journal of Applied Mechanics, 1971, 38(4): 1057-1060. doi: 10.1115/1.3408916
    [14]
    Moodie T B, Barclay D W. Wave propagation from a cylindrical cavity[J]. Acta Mechanica, 1977, 27(1/2/3/4): 103-120.
    [15]
    Moodie T B, Haddow J B, Mioduchowski A, et al. Plane elastic waves henerated by dynamical loading applied to edge of circular hole[J]. Journal of Applied Mechanics, 1981, 48(3): 577-581. doi: 10.1115/1.3157677
    [16]
    Akkas N, Erdogogan F. The residual variable method applied to the diffusion equation in cylindrical coordinates[J]. Acta Mechanic, 1989, 79(3/4): 207-219. doi: 10.1007/BF01187263
    [17]
    Zakout U, Akkas N. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium[J]. International Journal of Engineering Science, 1997, 35(12/13): 1203-1220. https://www.sciencedirect.com/science/article/pii/S0020722597000116
    [18]
    Feldgun V R, Kochetkov A V, Karinski Y S, et al. Internal blast loading in a buried lined tunnel[J]. International Journal of Impact Engineering, 2008, 35(3): 172-183. doi: 10.1016/j.ijimpeng.2007.01.001
    [19]
    高盟, 高广运, 王滢, 等.内部荷载作用下圆柱形孔洞的动力响应解答[J].力学季刊, 2009, 30(2): 266-272.

    Gao Meng, Gao Guang-yun, Wang Ying, et al. Solution on dynamic response of a cylindrical cavity under internal load[J]. Chinese Quarterly of Mechanics, 2009, 30(2): 266-272.
    [20]
    高盟, 高广运, 王滢, 等.饱和土与衬砌动力相互作用的圆柱形孔洞内源问题解答[J].固体力学学报, 2009, 30(5): 481-488.

    Gao Meng, Gao Guang-yun, Wang Ying, et al. Dynamic solutions of cylindrical cavities with the lining under internal load in the saturated soil[J]. Chinese Journal of Solid Mechanics, 2009, 30(5): 481-487.
    [21]
    蔡袁强, 陈成振, 孙宏磊.黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J].浙江大学学报:工学版, 2011, 45(9): 1657-1663. doi: 10.3785/j.issn.1008-973X.2011.09.024

    Cai Yuan-qiang, Chen Cheng-zhen, Sun Hong-lei. Dynamic response of tunnel in viscoelastic saturated soil subjec-ted to blast loads[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(9): 1657-1663. doi: 10.3785/j.issn.1008-973X.2011.09.024
    [22]
    Haddow J B, Lorimer S A, Tait R J. Nonlinear axial shear wave propagation in a hyperelastic incompressible solid[J]. Acta Mechanica, 1987, 66(1/2/3/4): 205-216. doi: 10.1007/BF01184294
    [23]
    Haddow J B, Jiang L. Finite amplitude azimuthal shear waves in a compressible hyperelastic solid[J]. Journal of Applied Mechanics, 2001, 68(2): 145-152. doi: 10.1115/1.1334862
    [24]
    Watanabe K, Payton R G. SH wave in a cylindrically anisotropic elastic solid a general solution for a point source[J]. Wave Motion, 1996, 25(2): 197-212. https://www.sciencedirect.com/science/article/pii/S0165212596000418
    [25]
    Barclay D W. Wavefront expansion for non-linear axial shear wave propagation[J]. International Journal of Nonlinear Mechanics, 1998, 33(2): 259-274. doi: 10.1016/S0020-7462(97)00016-4
    [26]
    Barclay D W. Shock front analysis for axial shear wave propagation in a hyperelastic incompressible solid[J]. Acta Mechanica, 1999, 133(1/2/3/4): 105-129. doi: 10.1007%2FBF01179013
    [27]
    Barclay D W. Shock calculations for axially symmetric shear wave propagation in a hyperelastic incompressible solid[J]. International Journal of Non-linear Mechanics, 2004, 39(1): 101-121. doi: 10.1016/S0020-7462(02)00141-5
    [28]
    Durbin F. Numerical inversion of Laplace transformation: An efficient improvement to Durbin and Abatep's method[J]. The Computer Journal, 1974, 17(4): 371-376. doi: 10.1093/comjnl/17.4.371
    [29]
    梁昆淼.数学物理方法[M].北京: 高等教育出版社, 2010.
    [30]
    Watson G N. Theory of Bessel function[M]. Cambridge, UK: Cambridge University Press, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (3174) PDF downloads(490) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return