Volume 34 Issue 2
May  2014
Turn off MathJax
Article Contents
Yan Kai, Tian Zhou, Guo Yong -hui, Dong Nan. Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball[J]. Explosion And Shock Waves, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06
Citation: Yan Kai, Tian Zhou, Guo Yong -hui, Dong Nan. Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball[J]. Explosion And Shock Waves, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06

Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball

doi: 10.11883/1001-1455(2014)02-0241-06
Funds:  Supported by the National Natural Science Foundation of China (91330205)
More Information
  • Corresponding author: Yan Kai, yaankai@163.com
  • Received Date: 2012-08-28
  • Rev Recd Date: 2013-03-18
  • Publish Date: 2014-03-25
  • According to the equations for the P1, Minerbo and M1approach models, the variations of their Eddington factors with the anisotropy factors were derived as well as the maximum eigenvalues of the moment equations of the radiative transfer against the anisotropy factors, respectively.And the M1approach model was used to numerically simulate the firball radiatve transfer from a 1 -kt TNT equivalent explosion.The fireball and shock wave fronts were given and compared with those by the different approach models.Numerical experiments show that the radiation wave velocity by the M1 approach is faster than that by the P1approach, but slower than that by the Minerbo approach.In the stage of the shock wave expansion, the radiation wave velocities by these three approaches are consistent with each other.
  • loading
  • [1]
    乔登江.核爆炸物理概论[M].北京: 国防工业出版社, 2003: 169-262.
    [2]
    Brode H L. Fireball phenomenology[R]. The RAND Corporation. AD0612197, 1965.
    [3]
    Brode H L, Hillendahl R W, Landshoff R K. Thermal radiation phenomena. Volume V: Radiation hydrodynamics of high temperature air[R]. AD0672837, 1967.
    [4]
    陈健华, 王心正, 谢龙生, 等.均匀空气中的强爆炸一维辐射流体力学数值解[J].爆炸与冲击, 1981(2): 37-49. http://www.bzycj.cn/article/id/11382

    Chen Jian-hua, Wang Xin-zheng, Xie Long-sheng, et al. A one-dimensional radiation hydrodynamic numerical solution for a strong explosion in uniform atmosphere[J]. Explosion and Shock Waves, 1981(2): 37-49. http://www.bzycj.cn/article/id/11382
    [5]
    王心正, 隋卫星.高空核爆炸火球的二维辐射流体力学计算[J].计算物理, 1987, 4(2): 159-168.

    Wang Xin-zheng, Sui Wei-xing. Two-dimension radiation hydrodynamics calculation of the high-altitude fireball[J]. Chinese Journal of Computational Physics, 1987, 4(2): 159-168.
    [6]
    田宙, 乔登江, 郭永辉.强爆炸早期火球现象的一维数值研究[J].计算物理, 2010, 27(1): 8-14. doi: 10.3969/j.issn.1001-246X.2010.01.002

    Tian Zhou, Qiao Deng-jiang, Guo Yong-hui. A one-dimensional numerical study on early fireball in strong explosion[J]. Chinese Journal of Computational Physics, 2010, 27(1): 8-14. doi: 10.3969/j.issn.1001-246X.2010.01.002
    [7]
    Minerbo G N. Maximum entropy Eddington factors[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1978, 20(6): 541-545. doi: 10.1016/0022-4073(78)90024-9
    [8]
    Kumholz M R, Klein R I, Mckee C F, et al. Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodymics[J]. The Astrophysical Journal, 2007, 667(1): 626-643. doi: 10.1086/520791
    [9]
    Seaid M, Klar A, Dubroca B. Flux limiters in the coupling of radiation and hydrodynamic models[J]. Journal of Computational and Applied Mathematics, 2004, 168(1/2): 425-435. https://www.sciencedirect.com/science/article/pii/S0377042703009737
    [10]
    Buer C, Despres B. Asymptotic preserving and positive schemes for radiation hydrodynamics[J]. Journal of Computational Physics, 2006, 215(2): 717-740. doi: 10.1016/j.jcp.2005.11.011
    [11]
    Swesty F D, Myra E S. A numerical algorithm for modeling multigroup neutrino-radiation hydrodynamics in two spatial dimensions[J]. The Astrophysical Journal Supplement Series, 2009, 181(1): 1-52. doi: 10.1088/0067-0049/181/1/1
    [12]
    Levermore C D. Relating Eddington factors to flux limiters[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1984, 31(2): 149-160. doi: 10.1016/0022-4073(84)90112-2
    [13]
    Anile A M, Pennisi S, Sammartino M. A thermodynamical approach to Eddington factors[J]. Journal of Mathematical Physics, 1991, 32(2): 544-555. doi: 10.1063/1.529391
    [14]
    Brunner T A, Holloway J P. One-dimensional Riemann solvers and the maximum entropy closure[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69(5): 543-566. doi: 10.1016/S0022-4073(00)00099-6
    [15]
    Buet C, Despres B. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 85(3/4): 385-418. https://www.sciencedirect.com/science/article/pii/S0022407303002334
    [16]
    Castor J I. Radiation hydrodynamics[M]. Cambridge, UK: Cambridge University Press, 2004: 213-245.
    [17]
    Pomraning G C. The equations of radiation hydrodynamics[M]. Dover: Dover Publications Inc, 2005: 427-505.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (3397) PDF downloads(607) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return