Citation: | Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07 |
[1] |
Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation-inert confinement interactions[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 483-488.
|
[2] |
Aslam T D, Bdzil J B. Analysis of the LANL detonation-confinement test[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 831-834.
|
[3] |
Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation confinement sandwich tests[C]//The 13th Symposium(International)on Detonation. Norfolk, VA, 2006: 6-10.
|
[4] |
Hill L G, Aslam T D. The LANL detonation-confinement test: Prototype development and sample results[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 847-850.
|
[5] |
Tarver C M, McGuire E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 641-649.
|
[6] |
Garcia M L, Tarver C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX9502[R]. UCRL-CONF-222376, 2006.
|
[7] |
Banks J W, Schwendeman D W, Kapila A K, et al. A study of detonation propagation and diffraction with compliant confinement[R]. UCRL-JRNL-233735, 2007.
|
[8] |
Stewart D S, Yoo S, Wescott B L. High-order numerical simulation and modelling of the interaction of energetic and inert materials[J]. Combustion Theory and Modelling, 2007, 11(2): 305-332. doi: 10.1080/13647830600876629a
|
[9] |
Eden G, Belcher R A. The effects of inert walls on the velocity of detonation in EDC35[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 831-841.
|
[10] |
Aveille J, Carion N. Experimental and numerical study of oblique interactions of detonation waves with explosives/solid material[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 842-851.
|
[11] |
Balaganskii I A, Agureikin V A. Effect of an inert high-modulus ceramic wall on detonation propagation in solid explosive charges[J]. Combustion, Explosive and Shock Waves, 1994, 30(5): 674-681. doi: 10.1007/BF00755836
|
[12] |
刘尔岩, 王元书, 刘邦弟.爆轰波与金属的斜相互作用[J].爆炸与冲击, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003
Liu Er-yan, Wang Yuan-shu, Liu Bang-di. Interaction between detonation and metals[J]. Explosion and Shock Waves, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003
|
[13] |
孙承纬, 卫玉章, 周之奎.应用爆轰物理[M].北京: 国防工业出版社, 2000.
|
[14] |
经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999.
|
[15] |
Bdzil J B. Steady-state two-dimensional detonation[J]. Journal of Fluid Mechanics, 1981, 108(2): 195-206. http://adsabs.harvard.edu/abs/1981JFM...108..195B
|
[16] |
李德元, 徐国荣, 水鸿寿, 等.二维非定常流体力学数值方法[M].北京: 科学出版社, 1987.
|
[1] | SUN Pengchang, YANG Guangdong, LU Wenbo, FAN Yong, MENG Haili, XUE Li. A study on explosive load history of rock blasting considering rock failure zones[J]. Explosion And Shock Waves, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206 |
[2] | ZHOU Lei, JIANG Yacheng, ZHU Zheming, DONG Yuqing, NIU Caoyuan, WANG Meng. Mechanism study of preventing crack propagation of fractured rockunder dynamic loads[J]. Explosion And Shock Waves, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125 |
[3] | YANG Zhaowei, LU Wenbo, CHEN Ming, YAN Peng, HU Yingguo, LIU Meishan, WU Xinxia, LENG Zhendong. Calculation of P wave quality factor of rock mass based on measured blasting vibrations[J]. Explosion And Shock Waves, 2020, 40(6): 065202. doi: 10.11883/bzycj-2019-0333 |
[4] | XU Gancheng, YUAN Weize, GU Jincai, ZHANG Xiangyang. Anti-detonation property of reinforcement rock[J]. Explosion And Shock Waves, 2019, 39(5): 052203. doi: 10.11883/bzycj-2018-0203 |
[5] | LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140 |
[6] | LU Qiang, WANG Zhanjiang, ZHANG Jingsen, DING Yang, LI Jin, GUO Zhiyun. Comparative studies on characteristics of elastic wave radiated from the tamped explosion in loess and rock-like sandy soil[J]. Explosion And Shock Waves, 2019, 39(5): 052202. doi: 10.11883/bzycj-2018-0025 |
[7] | Xie Yaoguo, Yao Xiongliang, Cui Hongbin, Li Xinfei. Wavelet analysis on shock response of a real ship subjected to non-contact underwater explosion[J]. Explosion And Shock Waves, 2017, 37(1): 99-106. doi: 10.11883/1001-1455(2017)01-0099-08 |
[8] | Hu Yang, Zhu Jianfang, Zhu Kai. Experimental study on explosion effect in a closed single rectangular cavity[J]. Explosion And Shock Waves, 2016, 36(3): 340-346. doi: 10.11883/1001-1455(2016)03-0340-07 |
[9] | Deng Guo-qiang, Yang Xiu-min. Numerical simulation of the effect of multiply EPW into engineering rock[J]. Explosion And Shock Waves, 2014, 34(3): 361-366. doi: 10.11883/1001-1455(2014)03-0361-06 |
[10] | Li Xiao-jie, Sun Wei, Yan Hong-hao, Wang Xiao-hong. Underwater explosive welding and compaction[J]. Explosion And Shock Waves, 2013, 33(1): 103-107. doi: 10.11883/1001-1455(2013)01-0103-05 |
[11] | GUAN Yong-hong, HU Ba-yi, HUANG Chao. Vibrationanalysisofanexplosionvesselbasedonwaveletpackettransform[J]. Explosion And Shock Waves, 2010, 30(5): 551-555. doi: 10.11883/1001-1455(2010)05-00551-05 |
[12] | LI Wei-guang, ZHANG Ji-chun. Study on rock mass bedding slope stability under blast seism[J]. Explosion And Shock Waves, 2007, 27(5): 426-430. doi: 10.11883/1001-1455(2007)05-0426-05 |