Citation: | Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07 |
[1] |
Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
|
[2] |
Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(4): 650-664. https://www.sciencedirect.com/science/article/pii/S0734743X05000795
|
[3] |
Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22): 3988-3998.
|
[4] |
Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36(6): 775-782. doi: 10.1016/j.ijimpeng.2008.11.013
|
[5] |
刘颖, 张新春.缺陷分布不均匀性对蜂窝材料面内冲击性能的影响[J].爆炸与冲击, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003
Liu Ying, Zhang Xin-chun. Effects of inhomogeneous distribution of defects on in-plane dynamic properties of honeycombs[J]. Explosion and Shock Waves, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003
|
[6] |
胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004
Hu Ling-ling, You Fang-fang. Dynamic mechanical honeycomb and properties of aluminum its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004
|
[7] |
Meguid S A, Cheon S S, El-Abbasi N. FE modelling of deformation localization in metallic foams[J]. Finite Elements in Analysis and Design, 2002, 38(7): 631-643. doi: 10.1016/S0168-874X(01)00096-8
|
[8] |
宋延泽, 李志强, 赵隆茂.基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J].爆炸与冲击, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010
Song Yan-ze, Li Zhi-qiang, Zhao Long-mao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model[J]. Explosion and Shock Waves, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010
|
[9] |
Song Y Z, Wang Z H, Zhao L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials and Design, 2010, 31(9): 4281-4289. doi: 10.1016/j.matdes.2010.04.007
|
[10] |
王鹏飞, 徐松林, 郑航, 等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
Wang Peng-fei, Xu Song-lin, Zheng Hang, et al. Influence of deformation modes on SHPB experimental results of cellular metal[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
|
[11] |
Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007
|
[12] |
Yu J L, Zheng Z J. Dynamic crushing of 2D cellular metals: Microstructure effects and rate-sensitivity mechanisms[J]. Acta Mechanica Sinica, 2010, 23(suppl): 45-55.
|
[13] |
Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
|
[14] |
Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb: Crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696. doi: 10.1016/S0020-7403(02)00060-7
|
[15] |
Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: 'Shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. doi: 10.1016/j.jmps.2005.05.003
|
[16] |
Zheng Z J, Liu Y D, Yu J L, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. doi: 10.1016/j.ijimpeng.2011.09.009
|