Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07
Citation: Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07

Finite element analysis on deformation modes of closed-cell metallic foam

doi: 10.11883/1001-1455(2014)04-0464-07
Funds:  Supported bythe National Natural Science Foundation of China (11002140, 90916026)
More Information
  • Corresponding author: Zheng Zhi-jun, zjzheng@ustc.edu.cn
  • Received Date: 2012-12-14
  • Rev Recd Date: 2013-03-21
  • Publish Date: 2014-07-25
  • Deformation behavior of closed-cell metallic foam under uniaxial dynamic compression was investigated using the finite element method of ABAQUS/Explicit code. The random 3D Voronoi technique was employed to construct foam specimens. Three deformation modes, namely the quasi-static homogeneous mode, the transitional mode and the shock mode, had been observed in the foam specimens with increasing of impact velocity. A deformation mode map with coordinates of relative density and impact velocity was presented for the foam considered. Two parameters, namely the stress uniformity index and the deformation localization index, were introduced to identify two critical impact velocities of mode transitions. The numerical results of critical impact velocities were compared with the predictions using the theoretical formulas from the literature. Based on the numerical and theoretical results of critical impact velocities, a scheme is suggested to determine the locking strain. It is found that the locking strain obtained from this scheme is between the densification strain and the complete densification strain.
  • [1]
    Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
    [2]
    Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(4): 650-664. https://www.sciencedirect.com/science/article/pii/S0734743X05000795
    [3]
    Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22): 3988-3998.
    [4]
    Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36(6): 775-782. doi: 10.1016/j.ijimpeng.2008.11.013
    [5]
    刘颖, 张新春.缺陷分布不均匀性对蜂窝材料面内冲击性能的影响[J].爆炸与冲击, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003

    Liu Ying, Zhang Xin-chun. Effects of inhomogeneous distribution of defects on in-plane dynamic properties of honeycombs[J]. Explosion and Shock Waves, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003
    [6]
    胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004

    Hu Ling-ling, You Fang-fang. Dynamic mechanical honeycomb and properties of aluminum its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004
    [7]
    Meguid S A, Cheon S S, El-Abbasi N. FE modelling of deformation localization in metallic foams[J]. Finite Elements in Analysis and Design, 2002, 38(7): 631-643. doi: 10.1016/S0168-874X(01)00096-8
    [8]
    宋延泽, 李志强, 赵隆茂.基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J].爆炸与冲击, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010

    Song Yan-ze, Li Zhi-qiang, Zhao Long-mao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model[J]. Explosion and Shock Waves, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010
    [9]
    Song Y Z, Wang Z H, Zhao L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials and Design, 2010, 31(9): 4281-4289. doi: 10.1016/j.matdes.2010.04.007
    [10]
    王鹏飞, 徐松林, 郑航, 等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014

    Wang Peng-fei, Xu Song-lin, Zheng Hang, et al. Influence of deformation modes on SHPB experimental results of cellular metal[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
    [11]
    Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007
    [12]
    Yu J L, Zheng Z J. Dynamic crushing of 2D cellular metals: Microstructure effects and rate-sensitivity mechanisms[J]. Acta Mechanica Sinica, 2010, 23(suppl): 45-55.
    [13]
    Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
    [14]
    Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb: Crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696. doi: 10.1016/S0020-7403(02)00060-7
    [15]
    Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: 'Shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. doi: 10.1016/j.jmps.2005.05.003
    [16]
    Zheng Z J, Liu Y D, Yu J L, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. doi: 10.1016/j.ijimpeng.2011.09.009
  • Cited by

    Periodical cited type(9)

    1. 胡和平,刘希文,张晓阳,孙耀威. 基于3D Voronoi模型形状不规则度组合梯度泡沫金属的动态冲击力学性能研究. 南华大学学报(自然科学版). 2021(01): 24-31 .
    2. 沈浩田,刘欢,杜中德,何世伟,华中胜. 预制倒角对泡沫铝动态冲击变形及吸能的影响. 振动与冲击. 2021(06): 100-106 .
    3. 郭亚周,杨海,刘小川,郑志军,王计真. 闭孔泡沫铝在动态加载下的压缩力学行为研究. 振动工程学报. 2020(02): 338-346 .
    4. 王根伟,刘冕,宋辉,王彬. 冲击载荷下径向密度排布对泡沫金属力学性能影响的研究. 爆炸与冲击. 2020(07): 4-16 . 本站查看
    5. 康健芬,郭彦峰,付云岗,韦青,吉美娟. 蜂窝厚度对纸蜂窝/聚乙烯泡沫复合层状结构的动态缓冲吸能特性的影响. 中国塑料. 2020(08): 36-43 .
    6. 李侯贞强,张亚栋,张锦华,姜春琳. 基于CT的泡沫铝三维细观模型重建及应用. 北京航空航天大学学报. 2018(01): 160-168 .
    7. 丁圆圆,郑志军,王士龙,周风华,虞吉林. 多孔材料吸能行为对相对密度和冲击速度的依赖性. 固体力学学报. 2018(06): 578-586 .
    8. 黄苏南,丁圆圆,王士龙,何思渊,郑志军. 闭孔泡沫铝动态材料参数的实验研究. 实验力学. 2018(06): 851-861 .
    9. 王根伟,王江龙. 负梯度闭孔泡沫金属的力学性能分析. 固体力学学报. 2017(01): 85-92 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (3916) PDF downloads(545) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return