Citation: | Deng Lei, Wang An-wen, Mao Liu-wei. Shock-resistance characteristics of sandwich cylindrical shells subjected to underwater explosion[J]. Explosion And Shock Waves, 2014, 34(5): 527-533. doi: 10.11883/1001-1455(2014)05-0527-07 |
[1] |
汪浩, 程远胜, 刘均, 等.新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析[J].振动与冲击, 2011, 30(1): 162-166. http://d.wanfangdata.com.cn/Periodical/zdycj201101036
Wang Hao, Cheng Yuan-sheng, Liu Jun, et al. Anti-shock analysis for new type rectangular honeycomb sandwich stiffened cylindrical shells subjected to underwater explosion shock load[J]. Journal of Vibration and Shock, 2011, 30(1), 162-166. http://d.wanfangdata.com.cn/Periodical/zdycj201101036
|
[2] |
Tong Zong-peng, Wang Yu, Li Yu-jie, et al. Characteristic of new type shock protective layer subjected to underwater explosion[J]. Journal of Ship Mechanics, 2007, 11(6): 924-932. http://www.researchgate.net/publication/290629472_Characteristic_of_new_type_shock_protective_layer_subjected_to_underwater_explosion
|
[3] |
Xue Zhen-yu, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4): 687-705.
|
[4] |
Xue Zhen-yu, Hutchinson J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-1305. http://www.sciencedirect.com/science/article/pii/S0734743X03001039
|
[5] |
Xue Zhen-yu, Hutchinson J W. Crush dynamics of square honeycomb sandwich cores[J]. International Journal for Numercial Methods in Engineering, 2006, 65: 2221-2245.
|
[6] |
Kwon Y W, Fox P K. Underwater shock response of a cylinder subjected to a side-on explosion[J]. Computers & Structures, 1993, 48(4): 637-646. http://www.sciencedirect.com/science/article/pii/004579499390257E
|
[7] |
姚熊亮, 张阿漫, 许维军, 等.基于ABAQUS软件的舰船水下爆炸研究[J].哈尔滨工程大学学报, 2006, 27(1): 37-41. http://www.cqvip.com/Main/Detail.aspx?id=21309402
Yao Xiong-liang, Zhang A-man, Xu Wei-jun, et al. Research on warship underwater explosion with ABAQUS software[J]. Journal of Harbin Engineering University, 2006, 27(1): 37-41. http://www.cqvip.com/Main/Detail.aspx?id=21309402
|
[8] |
汪玉, 华宏星.舰船现代冲击理论及应用[M].北京: 科学出版社, 2005.
|
[9] |
姚熊亮, 张阿漫, 许维军.声固耦合方法在舰船水下爆炸中的应用[J].哈尔滨工程大学学报, 2005, 26(6): 707-712. http://d.wanfangdata.com.cn/Periodical/hebgcdxxb200506003
Yao Xiong-liang, Zhang A-man, Xu Wei-jun. Application of coupled acoustic structural analysis to warship underwater explosion[J]. Journal of Harbin Engineering University, 2005, 26(6): 707-712. http://d.wanfangdata.com.cn/Periodical/hebgcdxxb200506003
|
[1] | WANG Yanbing, LI Xue, WANG Zhaoyang, HUANG Zhehang, MEI Hongjia, LI Yangyang, LUO Lin. Rock breaking effect of plasma blasting under confining pressure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0089 |
[2] | NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262 |
[3] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[4] | FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057 |
[5] | Ren Baoxiang, Tao Gang, Zhou Jie, Wang Jian, Wang Baogui. Experimental research on optimizing the flow fieldof pulse gas flow generator[J]. Explosion And Shock Waves, 2016, 36(1): 31-37. doi: 10.11883/1001-1455(2016)01-0031-07 |
[6] | Ni Yanjie, Xing Rongjun, Wan Gang, Jin Yong, Li Haiyuan, Yang Chunxia, Li Baoming. Porous propellant burning rate enhanced by plasma[J]. Explosion And Shock Waves, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06 |
[7] | WU Xian-qian, DUAN Zhu-ping, HUANG Chen-guang, SONG Hong-wei. Acouplingmodelforcomputingplasmapressure inducedbylasershockpeening[J]. Explosion And Shock Waves, 2012, 32(1): 1-7. doi: 10.11883/1001-1455(2012)01-0001-07 |
[8] | TANG En-ling, XIANG Sheng-hai, ZHANG Wei, LI Le-xin, YU Hui, ZHAO Xin-ying. Electromagneticcharacteristicsofexpandingplasmacloud createdbyhypervelocityimpac[J]. Explosion And Shock Waves, 2012, 32(3): 283-290. doi: 10.11883/1001-1455(2012)03-0283-08 |
[9] | TANG En-ling, ZHANG Qing-ming, ZHANG Jian. Electron temperature diagnosis of plasma generated by hypervelocity impact of a LY12 aluminum projectile into a LY12 aluminum target[J]. Explosion And Shock Waves, 2009, 29(3): 323-327. doi: 10.11883/1001-1455(2009)03-0323-05 |
[10] | LIU Jing-jing, LIU Zong-de. Theoretical analysis of the electromagnetically accelerated plasma spraying[J]. Explosion And Shock Waves, 2008, 28(1): 23-27. doi: 10.11883/1001-1455(2008)01-0023-05 |
[11] | WANG Xin-liang, YE Dan, GU Fan. The double fluid model of the non-equilibrium ionization zone in the detonation plasma[J]. Explosion And Shock Waves, 2008, 28(2): 131-137. doi: 10.11883/1001-1455(2008)02-0131-07 |
[12] | WU Jun-ying, CHEN Lang, FENG Chang-gen. Experiments and theoretical calculation of explosive-driven shock wave ferromagnetic generators[J]. Explosion And Shock Waves, 2007, 27(5): 398-404. doi: 10.11883/1001-1455(2007)05-0398-07 |
1. | 时本军,李杰,徐小辉,徐天涵,郭纬,李孝臣,李超,李干. 混凝土中多点聚集爆炸效应起爆参数优化设计. 爆炸与冲击. 2025(01): 153-167 . ![]() | |
2. | 蒲文龙,申罗飞,刘洋. 基于ANSYS/LS-DYNA的防凌减灾微差爆破数值模拟. 黑龙江科技大学学报. 2023(03): 325-332 . ![]() | |
3. | 王莹,秦业志,王志凯,姚熊亮. 不同类型炸药水下爆炸时冰层损伤特性研究. 振动与冲击. 2022(09): 189-198 . ![]() | |
4. | 王燕,李梦群,杨淼慧,徐锦,王佳奇. 复合防护结构抗破片侵彻性能的研究. 火工品. 2022(04): 16-20 . ![]() | |
5. | 吴榕榕,王健,王英霖. 弹体高速侵彻冰体研究. 弹箭与制导学报. 2022(04): 74-80 . ![]() | |
6. | 王英霖,王健,诸庆生. 高速弹体侵彻冰材料过程数值模拟研究. 兵器装备工程学报. 2021(04): 62-67 . ![]() | |
7. | 陈德勇,贺小轩,杨慧,相光友,左祖雄. 瓦斯爆炸冲击波对通风设施破坏情况数值模拟影响因素分析. 安全. 2021(12): 36-42 . ![]() |