Citation: | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[1] |
Proust Ch. A few fundamental aspects about ignition and flame propagation in dust clouds[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120. http://www.sciencedirect.com/science/article/pii/S0950423005001026
|
[2] |
Han O, Masaaki Y, Matsuda T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles'behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 153-160. doi: 10.1016/S0950-4230(00)00049-8
|
[3] |
Han O, Masaaki Y, Matsuda T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457. doi: 10.1016/S0950-4230(99)00072-8
|
[4] |
Gao W, Dobashi R, Toshio M, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6): 993-999. doi: 10.1016/j.jlp.2012.05.015
|
[5] |
丁以斌, 孙金华, 何学超, 等.锆粉尘云的火焰传播特性[J].燃烧科学与技术, 2010, 16(4): 353-358. http://www.cqvip.com/Main/Detail.aspx?id=35258845
Ding Yi-bin, Sun Jin-hua, He Xue-chao, et al. Flame propagation characteristic of zirconium particle cloud[J]. Journal of Combustion Science and Technology, 2010, 16(4): 353-358. http://www.cqvip.com/Main/Detail.aspx?id=35258845
|
[6] |
蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4): 432-438. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201204016.htm
Kuai Nian-sheng, Huang Wei-xing, Yuan Jing-jie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Waves, 2012, 32(4): 432-438. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201204016.htm
|
[7] |
来诚锋, 段滋华, 张永发, 等.煤粉末的爆炸机理[J].爆炸与冲击, 2010, 30(3): 325-328.
Lai Cheng-feng, Duan Zi-hua, Zhang Yong-fa, et al. Explosion mechanism of carbon powder[J]. Explosion and Shock Waves, 2010, 30(3): 325-328.
|
[8] |
高聪, 李化, 苏丹, 等.密闭空间煤粉的爆炸特性[J].爆炸与冲击, 2010, 30(2): 164-168.
Gao Cong, Li Hua, Su Dan, et al. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion and Shock Waves, 2010, 30(2): 164-168.
|
[9] |
徐旭常, 周力行.燃烧技术手册[M].北京: 化学工业出版社, 2007.
|
[10] |
Ewald K H, Anselmi-Tamburini U, Munir Z A. Combustion of zirconium powders in oxygen[J]. Materials Science and Engineering, 2000, 291(1/2): 118-130. http://www.sciencedirect.com/science/article/pii/S0921509300009679
|
[11] |
Hanai H, Kobayashi H, Niioka T. A numerical study of pulsating flame propagation in mixtures of gas and particles[J]. Proceedings of the Combustion Institute, 2000, 28(1): 815-822. doi: 10.1016/S0082-0784(00)80285-4
|
[12] |
潘峰, 马超, 曹卫国, 等.玉米淀粉粉尘爆炸危险性研究[J].中国安全科学学报, 2011: 21(7): 46-51. http://d.wanfangdata.com.cn/Periodical/zgaqkxxb201107008
Pan Feng, Ma Chao, Cao Wei-guo, et al. Research on explosion risk of corn starch dust[J]. China Safety Science Journal, 2011, 21(7): 46-51. http://d.wanfangdata.com.cn/Periodical/zgaqkxxb201107008
|
[13] |
Dreizin L, Hoffman K. Constant pressure combustion of aerosol of coarse magnesium panicles in microgravity[J]. Combustion and Flame, 1999, 118(1): 262-280. http://www.sciencedirect.com/science/article/pii/S0010218098001448
|
[14] |
仲倩, 王伯良, 黄菊, 等.火球动态模型在温压炸药热毁伤效应评估中的应用[J].爆炸与冲击, 2011, 31(5): 528-532.
Zhong Qian, Wang Bo-liang, Huang Ju, et al. Application of a dynamic model to thermal damage estimation of thermobaric explosives[J]. Explosion and Shock Waves, 2011, 31(5): 528-532.
|
[1] | ZHAO Jiangping, ZHANG Shuqi, ZHONG Xingrun, YU Kainan. Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0093 |
[2] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[3] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[4] | LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018 |
[5] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[6] | KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452 |
[7] | ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477 |
[8] | WU Linyuan, YU Lifu, WANG Tianshu, SUN Wei, XU Jianhang, LI Hang. Explosion characteristics of oil shale dust in a confined space[J]. Explosion And Shock Waves, 2022, 42(1): 015401. doi: 10.11883/bzycj-2021-0139 |
[9] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[10] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[11] | LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458 |
[12] | YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436 |
[13] | GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244 |
[14] | ZHOU Ning, ZHANG Guowen, WANG Wenxiu, ZHAO Huijun, YUAN Xiongjun, HUANG Weiqiu. Effect of ignition energy on the explosion process and the dynamic response of propane-air premixed gas[J]. Explosion And Shock Waves, 2018, 38(5): 1031-1038. doi: 10.11883/bzycj-2017-0049 |
[15] | Chen Xi, Chen Xianfeng, Zhang Hongming, Liu Xuanya, Zhang Ying, Niu Yi, Hu Dongtao. Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust[J]. Explosion And Shock Waves, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07 |
[16] | Yu Jianliang, Ji Wentao, Sun Huili, Yan Xingqing, Zhang Xinyan. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion And Shock Waves, 2017, 37(6): 924-930. doi: 10.11883/1001-1455(2017)06-0924-07 |
[17] | Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion And Shock Waves, 2015, 35(3): 372-379. doi: 10.11883/1001-1455-(2015)03-0372-08 |
[18] | KUAI Nian-sheng, HUANG Wei-xing, YUAN Jing-jie, . Influenceofignitionenergyondustexplosionbehavior[J]. Explosion And Shock Waves, 2012, 32(4): 432-438. doi: 10.11883/1001-1455(2012)04-0432-07 |
[19] | GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion And Shock Waves, 2010, 30(2): 164-168. doi: 10.11883/1001-1455(2010)02-0164-05 |
[20] | CHEN Zhi-hua, YE Jing-fang, FAN Bao-chun, JIANG Xiao-hai, GUI Ming-yue. Effects of a wedge obstacle on flame propagation and its structure[J]. Explosion And Shock Waves, 2006, 26(3): 208-213. doi: 10.11883/1001-1455(2006)03-0208-06 |
1. | 赵懿明,刘毅飞,杨振欣,张传彪,许张归,张欣,周庄红,李雯娟,曹卫国. 点火能量对煤尘爆炸火焰传播规律的影响. 中北大学学报(自然科学版). 2022(01): 70-75 . ![]() | |
2. | 孙睿成,刘天奇,孙溢阳. 微米级煤尘云最低着火温度特性试验研究. 科技与创新. 2022(17): 7-9 . ![]() | |
3. | 梁运涛,王泠峰,苑春苗,田富超,王敬燕. 热板上煤尘着火及引燃煤粉尘云特性试验研究. 中国矿业大学学报. 2022(05): 894-900 . ![]() | |
4. | 刘静平,焦枫媛,刘毅飞,吴星亮,徐司雨,徐森. 点火延时对褐煤煤粉爆炸火焰传播过程的影响. 中北大学学报(自然科学版). 2022(06): 536-540 . ![]() | |
5. | 刘天奇,田伟业,贾瑞衡,孙睿成. 微米级褐煤粉尘爆炸压力试验研究. 消防科学与技术. 2022(12): 1629-1632 . ![]() | |
6. | 汤其建,秦汝祥,戴广龙. 索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响. 煤炭学报. 2021(02): 489-497 . ![]() | |
7. | 李海涛,陈晓坤,邓军,胡湘渝,王秋红,翟小伟. 开放管道内煤粉云形成机制及爆炸过程火焰动态行为数值模拟. 煤炭学报. 2021(08): 2600-2613 . ![]() | |
8. | 郭家鑫,谭迎新,刘毅飞,方帆,杨振欣,张硕,曹卫国. 燃烧管长度对煤粉火焰传播规律的影响. 测试技术学报. 2021(05): 381-385 . ![]() | |
9. | 葛少成,王卓龑,陈曦,范超男. 煤矿除尘技术的研究与展望. 能源与环保. 2021(12): 1-8 . ![]() | |
10. | 马瑞,魏芸,刘晅亚,陈晔. 大型储煤筒仓进料过程煤尘浓度分布及煤尘爆炸数值模拟. 消防科学与技术. 2021(12): 1728-1732 . ![]() | |
11. | 王燕,齐英全,温小萍,王蔚,甘向阳,裴蓓,纪文涛. 煤尘组分对瓦斯/煤尘复合爆炸下限的影响研究. 煤炭科学技术. 2020(02): 125-130 . ![]() | |
12. | 刘天奇. 微米级玉米粉尘爆炸能量传播数学模型研究. 数学的实践与认识. 2020(10): 144-149 . ![]() | |
13. | 宫婕,聂百胜,樊堉,张乐同,葛泽. 水平管道内褐煤煤尘爆炸传播特性. 兵工学报. 2020(S2): 156-161 . ![]() | |
14. | 甘波,高伟,张新燕,姜海鹏,毕明树. 不同粒径PMMA粉尘云火焰温度特性研究. 爆炸与冲击. 2019(01): 140-147 . ![]() | |
15. | 宋佰超,李雨成,罗红波. 挥发分对煤尘爆炸特性影响研究. 数学的实践与认识. 2019(01): 118-123 . ![]() | |
16. | 刘天奇. 水平管道空间煤尘爆炸火焰传播特性数值模拟. 工矿自动化. 2019(07): 59-65 . ![]() | |
17. | 刘天奇. 不同尺度管道内煤尘爆炸火焰传播数值模拟. 消防科学与技术. 2019(07): 917-921 . ![]() | |
18. | 刘天奇,李雨成,罗红波. 不同变质程度煤尘爆炸压力特性变化规律实验研究. 爆炸与冲击. 2019(09): 158-165 . ![]() | |
19. | 刘天奇. 褐煤爆炸冲击气流传播特性与CO生成特性数值模拟. 爆炸与冲击. 2019(10): 152-160 . ![]() | |
20. | 刘天奇. 不同煤质煤尘爆炸火焰热量释放模型研究. 消防科学与技术. 2019(12): 1676-1680 . ![]() | |
21. | 刘天奇,郑秋雨,苏长青. 水平管内不同煤质煤尘爆炸火焰传播特性实验研究. 中国安全生产科学技术. 2018(10): 127-132 . ![]() | |
22. | 李雨成,刘天奇,周西华,褚洋,孟昱. 小尺度水平玻璃管中煤尘爆炸火焰传播特性影响因素研究. 安全与环境学报. 2017(06): 2176-2179 . ![]() | |
23. | 刘贞堂,林松,赵恩来,张松山,郭汝林. 水平管道煤尘爆炸残留物时空变化特征. 爆炸与冲击. 2017(02): 237-242 . ![]() | |
24. | 陈曦,陈先锋,张洪铭,刘晅亚,张英,牛奕,胡东涛. 惰化剂粒径对铝粉火焰传播特性影响的实验研究. 爆炸与冲击. 2017(04): 759-765 . ![]() | |
25. | 李雨成,毕秋苹,刘天奇. 混合煤质协同作用下煤尘爆炸火焰特性研究. 煤炭科学技术. 2017(04): 68-71+88 . ![]() | |
26. | 刘静平,赵金刚,潘峰,秋珊珊. 硬脂酸粉尘爆炸过程中火焰传播试验及数值模拟. 爆破器材. 2016(05): 11-16 . ![]() |