Volume 34 Issue 5
Dec.  2014
Turn off MathJax
Article Contents
Wang Chang-feng, Zheng Zhi-jun, Yu Ji-lin. Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression[J]. Explosion And Shock Waves, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07
Citation: Wang Chang-feng, Zheng Zhi-jun, Yu Ji-lin. Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression[J]. Explosion And Shock Waves, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07

Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression

doi: 10.11883/1001-1455(2014)05-0601-07
  • Received Date: 2013-02-26
  • Rev Recd Date: 2013-10-17
  • Publish Date: 2014-09-25
  • The three-dimensional Voronoi technique and the explicit finite element method were utilized to investigate the micro-inertia effect and dynamic plastic Poisson's ratio of closed-cell and opencell metallic foams.The simulation results indicate that the plastic Poisson's ratio decrease with increasing nominal strain, the peak value of which decreases as the impact velocity increases.And the Poisson's ratio increases with the increasing of relative density.The micro-inertia plays little role in enhancing the plateau stress of metallic foams.The above simulation results can explain the existent experimental phenomenon that the crushing stress decreases with increasing loading rates, which is endured by the closed-cell aluminum foam under lateral constraint.
  • loading
  • [1]
    Gioux G, McCormack T M, Gibson L J. Failure of aluminum foams under multiaxial loads[J]. International Journal of Mechanical Sciences, 2000, 42(6): 1097-1117. doi: 10.1016/S0020-7403(99)00043-0
    [2]
    Doyoyo M, Wierzbicki T. Experimental studies on the yield behavior of ductile and brittle aluminum foams[J]. International Journal of Plasticity, 2003, 19(8): 1195-1214. doi: 10.1016/S0749-6419(02)00017-7
    [3]
    Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253-1283.
    [4]
    Chen C, Lu T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids[J]. International Journal of Solids and Structures, 2000, 37(52): 7769-7786. doi: 10.1016/S0020-7683(00)00003-2
    [5]
    Yu J L, Wang E H, Li J R. An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression[M]. Lancaster: D E Stech Publications, 2008: 879-882.
    [6]
    Kumar P S, Ramachandra S, Ramamurty U. Effect of displacement-rate on the indentation behavior of an aluminum foam[J]. Materials Science and Engineering: A, 2003, 347(1/2): 330-337.
    [7]
    Lopatnikov S L, Gama B A, Haque M J et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61(1/2): 61-71.
    [8]
    Okabe A, Boots B, Sugihara K. Spatial tessellations: Concepts and applications of Voronoi diagrams[M]. Chichester Wiley, 1992: 229-287.
    [9]
    Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2Dcellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664.
    [10]
    Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22/23): 3988-3998.
    [11]
    Raj R E, Parameswaran V, Daniel B S S. Comparison of quasi-static and dynamic compression behavior of closedcell aluminum foam[J]. Materials Science and Engineering: A, 2009, 526(1/2): 11-15.
    [12]
    Vesenjak M, Veyhl C, Fiedler T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541: 105-109. doi: 10.1016/j.msea.2012.02.010
    [13]
    Montanini R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation[J]. International Journal of Mechanical Sciences, 2005, 47(1): 26-42. doi: 10.1016/j.ijmecsci.2004.12.007
    [14]
    Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (3361) PDF downloads(538) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return