Citation: | Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation[J]. Explosion And Shock Waves, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06 |
[1] |
Shaw J A, Kyriakides S. Thermo-mechanical aspects of NiTi[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8): 1243-1281.
|
[2] |
Vitiello A, Giorleo G, Morace R E. Analysis of thermo-mechanical behaviour of Nitinol wires with high strain rates[J]. Smart Materials and Structures, 2005, 14(1): 215-221.
|
[3] |
Lim T J, McDowell D L. Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(3): 651-676.
|
[4] |
Helm D, Haupt P. Thermomechanical behavior of shape memory alloys[C]//Lynch S. Proc of SPIE's 8th Annual International Symposium on Smart Structures and Materials. 2001: 302-313.
|
[5] |
Corneliu C. Shape memory alloys[M]. 2010: 17-40.
|
[6] |
Morin C, Moumni Z, Zaki W. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling[J]. International Journal of Plasticity, 2011, 27: 1959-1980.
|
[7] |
Gadaj S P, Nowacki W K, Pieczyska E A. Temperature evolution in deformed shape memory alloy[J]. Infrared Physics & Technology, 2002, 43(3): 151-155.
|
[8] |
Chen Wei-nong, Song Bo. Temperature dependence of a NiTi shape memory alloy's superelastic behavior at a high strain rate[J]. Journal of Mechanics of Materials and Structures, 2006, 1(2): 339-356.
|
[9] |
Hodowany K R. On the conversion of plastic work into heat[D]. California Institute of Technology, 1997.
|
[10] |
Mason J J, Rosakis A J, Ravichandran G. On the strain and strain rate dependence of the fraction of plastic work converted into heat: An experimental study using high speed infrared detectors and the Kolsky bar[J]. Mechenics of Materials, 1994, 17(2): 135-145.
|
[11] |
Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251-283.
|
[12] |
刘永贵, 唐志平, 崔世堂.冲击载荷下瞬态温度的实时测量方法[J].爆炸与冲击, 2014, 34(4): 471-476.
Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Real-time measuring methods for transient temperature under shock loading[J]. Explosion and Shock Waves, 2014, 34(4): 471-476.
|
[13] |
王礼立.应力波基础[M].北京: 国防工业出版社, 2005: 51-55.
|
[14] |
Jy R D.红外系统原理[M].北京: 国防工业出版社, 1975.
|
[1] | GUO Zhiyun, LU Qiang, DING Yang, ZHANG LiangYong, LI Jin. Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0132 |
[2] | WU Xingxing, ZHANG Lunping, ZOU Haoyang, ZHANG Nu, WANG Haikun, LIU Jianhu. A calculation method for ship structure damage under cabin explosion[J]. Explosion And Shock Waves, 2024, 44(3): 031405. doi: 10.11883/bzycj-2023-0289 |
[3] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[4] | YU Ming. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media[J]. Explosion And Shock Waves, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435 |
[5] | LIU Yiru, HU Xiaomian. An isentropic equation of state of detonation product based on a Hugoniot relationship of detonation product[J]. Explosion And Shock Waves, 2018, 38(1): 60-65. doi: 10.11883/bzycj-2016-0132 |
[6] | YANG Mutian, ZHENG Bo. A new method for calculating the detonation velocity of CHNO and CHNOAl explosives[J]. Explosion And Shock Waves, 2018, 38(1): 191-196. doi: 10.11883/bzycj-2016-0140 |
[7] | Nan Yu-xiang, Jiang Jian-wei, Wang Shu-you, Men Jian-bing. One parameter-obtained method for JWL equation of state considered detonation parameters[J]. Explosion And Shock Waves, 2015, 35(2): 157-163. doi: 10.11883/1001-1455(2015)02-0157-07 |
[8] | Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08 |
[9] | Zhang Wei, Liu Jie, Han Xu, Tan Zhu-hua. A computational inverse technique for determination of detonator status in underground explosion[J]. Explosion And Shock Waves, 2013, 33(3): 231-037. doi: 10.11883/1001-1455(2013)03-0231-07 |
[10] | GAO Hong-quan, LU Fang-yun, WANG Shao-long, LUO Yong-feng, YAN Peng, YUAN Wei, HU Jian. Influencesofinnershellsoutsidedisperseexplosive onSEFAEdamagepower[J]. Explosion And Shock Waves, 2011, 31(4): 380-384. doi: 10.11883/1001-1455(2011)04-0380-05 |
[11] | ZHAO Yan, XU Fei, LI Yu-long, CHEN Liu-ding. An improved SPH method for preventing numerical fractures[J]. Explosion And Shock Waves, 2009, 29(5): 503-508. doi: 10.11883/1001-1455(2009)05-0503-06 |
[12] | QIAN Wei-xin, LIU Rui-gen, WANG Wan-li, QI Shuang-xi, WANG Wei, CHEN Jin-ming. A new method of diffusion filtering for flash X-ray radiographic CCD image[J]. Explosion And Shock Waves, 2006, 26(4): 351-355. doi: 10.11883/1001-1455(2006)04-0351-05 |
[13] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, WANG Rong-bo, TIAN Jian-hua, HE Li-hua. Run distance to detonation in a TATB/HMX-based explosive[J]. Explosion And Shock Waves, 2006, 26(6): 510-515. doi: 10.11883/1001-1455(2006)06-0510-06 |