Citation: | Liu Yun-long, Wang Yu, Zhang A-man. Whipping responses of double cylindrical shell structures to underwater explosion based on DAA2[J]. Explosion And Shock Waves, 2014, 34(6): 691-700. doi: 10.11883/1001-1455(2014)06-0691-10 |
[1] |
Huang H. Transient interaction of acoustic plane waves with a spherical elastic shell[J]. The Journal of the Acoustical Society of America, 1969, 45(3): 661-670.
|
[2] |
Huang H. An exact Analysis of the transient interaction of acoustic plane waves with a cylindrical elastic shell[J]. Journal of Applied Mechanics, 1970, 37: 1091-1099.
|
[3] |
Huang H, Lu Y P, Wang Y F. Transient interaction of spherical acoustic waves and a spherical elastic shell[J]. Journal of Applied Mechanics, 1971, 38: 71-74.
|
[4] |
Geers T L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems[J]. Journal of the Acoustical Society of America, 1971, 49(5B): 1505-1510.
|
[5] |
Geers T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. Journal of the A-coustical Society of America, 1978, 64(5): 1500-1508.
|
[6] |
刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].无锡: 中国船舶科学技术研究所, 2002: 89-112.
|
[7] |
孙士丽.瞬态载荷作用下大幅运动航行体流固耦合方法及应用研究[D].哈尔滨: 哈尔滨工程大学, 2009: 15-34.
|
[8] |
王诗平, 孙士丽, 张阿漫, 等.冲击波和气泡作用下舰船结构动态响应的数值模拟[J].爆炸与冲击, 2011, 31(4): 367-372.
Wang Shi-ping, Sun Shi-li, Zhang A-man, et al. Numerical simulation of dynamic response of warship structures subjected to underwater explosion shockwaves and bubbles[J]. Explosion and Shock Waves, 2011, 31(4): 367-372.
|
[9] |
张弩, 宗智, 张文鹏, 等.基于双渐进方法的水下爆炸气泡载荷作用下舰船的动态响应分析[J].振动与冲击, 2012, 32(23): 50-56.
Zhang Nu, Zong Zhi, Zhang Wen-peng, et al. Dynamic response of a ship hull structure subjected to an underwater explosion bubble based on doubly asymptotic approximation method[J]. Journal of Vibration and Shock, 2012, 32(23): 50-56.
|
[10] |
董海, 刘建湖, 吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析[J].船舶力学, 2007, 11(2): 250-258.
Dong Hai, Liu Jian-hu, Wu You-sheng. Whipping response analysis of slender stiffened cylindrical shell subjected to underwater explosion with bubble pulse[J]. Journal of Ship Mechanics, 2007, 11(2): 250-258.
|
[11] |
Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601.
|
[12] |
Geers T L, Park C K. Optimization of the G & H bubble model[J]. Shock and Vibration, 2005, 12(1): 3-8.
|
[13] |
Sprague M A, Geers T L. Response of empty and fluid-filled submerged spherical shells to plane and spherical, step-exponential acoustic waves[J]. Shock and Vibration, 1999, 6: 147-157.
|
[14] |
王诗平, 孙士丽, 张阿漫, 等.可压缩流场中气泡脉动数值模拟[J].力学学报, 2012, 44(3): 513-519.
Wang Shi-ping, Sun Shi-li, Zhang A-man, et al. Numerical simulation of bubble dynamics in compressible fluid[J]. Journal of Theoretical and Applied Mechanics, 2012, 44(3): 513-519.
|
[15] |
Geers T L, Zhang P Z. Doubly asymptotic approximations for submerged structures with internal fluid volumes: Formulation[J]. Journal of Applied Mechanics, 1994, 61(4): 893-899.
|
[16] |
Geers T L, Zhang P Z. Doubly asymptotic approximations for submerged structures with internal fluid volumes: Evaluation[J]. Journal of Applied Mechanics, 1994, 61(4): 900-906.
|
[17] |
Wilkerson S A. Elastic whipping response of ships to an underwater explosion loading[D]. Washington: George Washington University, 1985: 57-72.
|
[18] |
Zhang P, Geers T L. Excitation of a fluid-filled, submerged elastic shell by a transient acoustic wave[J]. Journal of the Acoustical Society of America, 1993, 93(2): 696-705.
|
[1] | WU Xingxing, ZHANG Lunping, ZOU Haoyang, ZHANG Nu, WANG Haikun, LIU Jianhu. A calculation method for ship structure damage under cabin explosion[J]. Explosion And Shock Waves, 2024, 44(3): 031405. doi: 10.11883/bzycj-2023-0289 |
[2] | LI Linna, ZHONG Dongwang, HUANG Xiaowu, HE Li, SI Jianfeng, TU Shengwu. Reliability analysis of deepwater explosion test vessel based on dynamic prediction[J]. Explosion And Shock Waves, 2021, 41(1): 014901. doi: 10.11883/bzycj-2020-0078 |
[3] | WU Kai, WANG Xianhui, ZHOU Yunbo, BI Zheng, LI Mingxing. Optimization of vehicle protection components based on reliability[J]. Explosion And Shock Waves, 2021, 41(3): 035101. doi: 10.11883/bzycj-2020-0126 |
[4] | WANG Zhao, WU Zutang, WEN Guangrui, YANG Jun, CHEN Liqiang, SHI Guokai. A fiber optic pressure sensing technology based on thin diaphragm structure[J]. Explosion And Shock Waves, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091 |
[5] | WU Zhihui, QIAN Jianping, NIU Gongjie. A chamber pressure simulator with an exhaust element[J]. Explosion And Shock Waves, 2018, 38(6): 1181-1188. doi: 10.11883/bzycj-2018-0014 |
[6] | YANG Mutian, ZHENG Bo. A new method for calculating the detonation velocity of CHNO and CHNOAl explosives[J]. Explosion And Shock Waves, 2018, 38(1): 191-196. doi: 10.11883/bzycj-2016-0140 |
[7] | Wang Dan, Yu Hai-jiang. Applications of experimental design in study of explosive network's reliability[J]. Explosion And Shock Waves, 2015, 35(2): 184-190. doi: 10.11883/1001-1455(2015)02-0184-07 |
[8] | Qin Dong-ze, Fan Ning-jun. Security and reliability of a self-destructive device[J]. Explosion And Shock Waves, 2014, 34(1): 111-114. doi: 10.11883/1001-1455(2014)01-0111-04 |
[9] | Zhang Xu-ping, Zhao Jian-heng, Tan Fu-li, Wang Gui-ji, Luo Bin-qiang, Mo Jian-jun, Zhong Tao, Sun Cheng-wei, Liu Cang-li. A method for magnetically driven flyer simulation coupled with electrical circuit of generator[J]. Explosion And Shock Waves, 2014, 34(3): 257-263. doi: 10.11883/1001-1455(2014)03-0257-07 |
[10] | Liu Ming, An Wei-guang, Song Xiang-hua, . Dynamic stability and reliability of a supercavitating projectile with stochastic parameters[J]. Explosion And Shock Waves, 2013, 33(5): 525-530. doi: 10.11883/1001-1455(2013)05-0525-06 |
[11] | Zhang Wei, Liu Jie, Han Xu, Tan Zhu-hua. A computational inverse technique for determination of detonator status in underground explosion[J]. Explosion And Shock Waves, 2013, 33(3): 231-037. doi: 10.11883/1001-1455(2013)03-0231-07 |
[12] | DONG Hai-ping, CAI Rui-jiao, MU Hui-na, CAO Jian-hua. A sensitivity parameter design method for reliability of explosive initiators[J]. Explosion And Shock Waves, 2009, 29(6): 613-616. doi: 10.11883/1001-1455(2009)06-0613-04 |
[13] | HONG Dong-pao, ZHAO Yu, WEN Yu-quan. Reliability assessment for explosive initiator using virtual samples[J]. Explosion And Shock Waves, 2009, 29(6): 669-672. doi: 10.11883/1001-1455(2009)06-0669-04 |
[14] | PAN Hao, HU Xiao-mian. A new reaction rate model for simulating the detonation process of the insensitive high explosives[J]. Explosion And Shock Waves, 2007, 27(3): 236-239. doi: 10.11883/1001-1455(2007)03-0236-04 |
[15] | WEN Yu-quan, HONG Dong-pao, WANG Wei. Study on theory and method of reliability assessment of explosive initiator based on testing entropy[J]. Explosion And Shock Waves, 2007, 27(6): 553-556. doi: 10.11883/1001-1455(2007)06-0553-04 |
[16] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
1. | 钱秉文,周刚,李名锐,陈春林,高鹏飞,沈子楷,马坤. 弹体材料性能对超高速侵彻深度的影响规律. 爆炸与冲击. 2024(10): 158-168 . ![]() |