Volume 35 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Wang Rui-li, Liu Quan, Wen Wan-zhi. Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL[J]. Explosion And Shock Waves, 2015, 35(1): 9-15. doi: 10.11883/1001-1455(2015)01-0009-07
Citation: Wang Rui-li, Liu Quan, Wen Wan-zhi. Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL[J]. Explosion And Shock Waves, 2015, 35(1): 9-15. doi: 10.11883/1001-1455(2015)01-0009-07

Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL

doi: 10.11883/1001-1455(2015)01-0009-07
  • Received Date: 2013-06-24
  • Rev Recd Date: 2013-09-10
  • Publish Date: 2015-01-25
  • A non-intrusive polynomial chaos method was introduced, and the main procedure of uncertainty quantification for JWL-EOS parameters was given. The method was implemented for the uncertainty quantification of the input parametersR1 and R2 of JWL-EOS to the detonation of plane and divergence. The results show that the methods of non-intrusive polynomial chaos can provide a valuable tool for the simulation of propagation of uncertainties, and uncertainty quantification for modeling and simulation in complex engineering.
  • loading
  • [1]
    Green L, Lee E, Mitchell A, et al, Equations of state of PBX-9404, LX-07, RX-26-AF detonation products at pressure above detonation pressure[R]. UCRL-89664.1983.
    [2]
    王瑞利, 张树道, 刘全, 等.复杂工程M & S中不确定度量化方法进展[C]//中国力学大会2013年论文摘要集.西安, 2013.
    [3]
    Wiener S. The homogeneous chaos[J]. America Journal of Mathematic, 1938, 60(4): 897-936.
    [4]
    Maitre P O, Knio O M. Spectral methods for uncertainty quantification: With applications to computational fluid dynamics[M]. New York: Springer, 2010.
    [5]
    Hosder S, Perez R, Walters R W. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit(2006). Reno, Nedava, 2006: 1-19.
    [6]
    Knio O, Maitre O. Uncertainty propagation in CFD using polynomial chaos decomposition[J]. Fluid Dynamics Research, 2006, 38: 616-640.
    [7]
    王晓东, 康顺.多项式混沌法求解随机Burgers方程[J].工程热物理学报, 2010, 31(3): 393-398.

    Wang Xiao-dong, Kang Shun. Solving stochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31(3): 393-398.
    [8]
    刘智益, 王晓东, 康顺.多项式混沌方法在随机方腔流动模拟中的应用[J].工程热物理学报, 2012, 33(3): 419-422.

    Liu Zhi-yi, Wang Xiao-dong, Kang Shun. Application of multi-dimensional polynomial chaos on numerical simulation of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012, 33(3): 419-422.
    [9]
    刘全, 王瑞利, 林忠, 等.流体力学拉氏程序收敛性及数值计算不确定度初探[J].计算物理, 2013, 30(3): 346-352.

    Liu Quan, Wang Rui-li, Lin Zhong, et al. Asymptotic convergence analysis and quantification of uncertainty in Lagrangian computations[J]. Chinese Journal of Computational Physics, 2013, 30(3): 346-352.
    [10]
    王瑞利, 林忠, 闫伟.多介质问题分析的前处理程序PreGenGrid[J].应用数学和力学, 2013, 5(15): 535-545.

    Wang Rui-li, Lin Zhong, Yan Wei. Simulations of the multi-medium problem pre-process: PreGenGrid[J]. Applied Mathematics and Mechanics, 2013, 5(15): 535-545.
    [11]
    王瑞利, 林忠, 倪国喜.基于任意多边形拉氏网格的有限体积方法研究及应用[J].数值计算与计算机应用, 2006, 27(1): 31-38.

    Wang Rui-li, Lin Zhong, Ni Guo-xi. Base on arbitrary n-polygon Lagrange grids finite volume method and applications[J]. Journal of Numerical Methods and Computer Applications, 2006, 27(1): 31-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (4795) PDF downloads(718) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return