YU De-yun, YANG Jun, CHEN Da-yong, YANG Zhong-hua. Numericalsimulationofreinforcedconcretestructurebasedonseparateelementandcommonnodemode[J]. Explosion And Shock Waves, 2011, 31(4): 349-354. doi: 10.11883/1001-1455(2011)04-0349-06
Citation: Zou Hua, Lu Xin, Zhou Yan-huang. Interior ballistic theory based analysis of solid differential traveling charge of high muzzle velocity gun[J]. Explosion And Shock Waves, 2015, 35(1): 70-75. doi: 10.11883/1001-1455(2015)01-0070-06

Interior ballistic theory based analysis of solid differential traveling charge of high muzzle velocity gun

doi: 10.11883/1001-1455(2015)01-0070-06
  • Received Date: 2013-06-17
  • Rev Recd Date: 2013-11-23
  • Publish Date: 2015-01-25
  • A solid traveling charge concept which can be used in high muzzle velocity gun firing is proposed based on differential principle. This concept can effectively overcome disadvantage of traditional traveling charge which increases projectile velocity and projectile base maximum pressure at the same time. A main character of the concept is to realize automatic compression of energy storage chamber and continuous injection of traveling working medium toward the in-bore space through speed difference between different components. Therefore the concept can effectively fill pressure drops of the projectile bottom and improve the utilization rate of gun working volume. The kinetic model of different components of differential traveling projectile and the physical quantity distribution of missile-borne working medium are deduced. With fixed maximum bore pressure, maximum projectile base pressure, projectile mass and travel, etc., and traveling charge mass 10.2 kg, calculation of some large caliber gun indicates that the projectile muzzle velocity increases by 26% and the utilization rate of gun working volume increases by 44%. This study provides a new technological approach for increasing gun muzzle velocity and realizing ultra-long distance firing.
  • [1]
    杨绍卿.灵巧弹药工程[M].北京: 国防工业出版社, 2010.
    [2]
    邹华, 张领科, 周彦煌.采用组合发射提高某型火炮初速的理论研究[J].火炸药学报, 2013, 36(2): 69-75.

    Zou Hua, Zhang Ling-ke, Zhou Yan-huang. Theoretical study of increasing projectile initial velocity by using combined firing[J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 69-75.
    [3]
    杨京广, 余永刚.随行装药方案提高大口径火炮初速的数值预测[J].爆炸与冲击, 2008, 28(2): 161-165. doi: 10.11883/1001-1455(2008)02-0161-05

    Yang Jing-guang, Yu Yong-gang. Velocity prediction of big caliber gun based on traveling charge scheme[J]. Explosion and Shock Waves, 2008, 28(2): 161-165. doi: 10.11883/1001-1455(2008)02-0161-05
    [4]
    王浩.随行装药理论研究与实验技术方案[D].南京: 南京理工大学, 1992.
    [5]
    周彦煌, 王升晨. 120 mm反坦克炮采用随行装药提高初速的理论研究[J].兵工学报, 1995(3): 5-10.

    Zhou Yan-huang, Wang Sheng-chen. A theoretical study of muzzle velocity augmentation with traveling charges in the 120 mm anti-tank gun[J]. Acta Armamentarii, 1995(3): 5-10.
    [6]
    Morrison W F, Coffee T P. A modified Lagrange pressure gradient for the regenerative liquid propellant gun[R]. BRL-TR-3073. U. S. Army Ballistic Research Laboratory, 1990.
  • Relative Articles

    [1]TAN Ye, LI Xuemei, YU Yuying, NAN Xiaolong, GAN Yuanchao, YE Xiangping, HU Jianbo, WANG Qiannan. Yield strength of [100] LiF under shock compression up to 60 GPa[J]. Explosion And Shock Waves, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242
    [2]CHONG Tao, MO Jianjun, ZHENG Xianxu, FU Hua, CAI Jintao. Elastic-plastic transition behaviors of HMX crystal under ramp wave compression[J]. Explosion And Shock Waves, 2021, 41(5): 053101. doi: 10.11883/bzycj-2020-0071
    [3]TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309
    [4]QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141
    [5]LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133
    [6]Shi Chunying, Xu Songlin, Shan Junfang, Wang Pengfei, Hu Shisheng. Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression[J]. Explosion And Shock Waves, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08
    [7]Li Tao, Fu Hua, Li Kewu, Gu Yan, Liu Cangli. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression[J]. Explosion And Shock Waves, 2017, 37(1): 120-125. doi: 10.11883/1001-1455(2017)01-0120-06
    [8]DingYu-qing, TangWen-hui, XuXin, RanXian-wen. Experimentalstudyofmoistureeffectsondynamic compressionpropertiesofunsaturatedclay[J]. Explosion And Shock Waves, 2013, 33(6): 625-630. doi: 10.11883/1001-1455(2013)06-0625-06
    [9]CHEN Xiao-wei, LI Ji-cheng, ZHANG Fang-ju, CHEN Gang. Experimentalresearchonthepenetrationoftungsten-fiber/metallic glass-matrixcompositematerialpenetratorintosteeltarge[J]. Explosion And Shock Waves, 2012, 32(4): 346-354. doi: 10.11883/1001-1455(2012)04-0346-09
    [10]ZHENG Wen, XU Song-lin, HU Shi-sheng. Dynamicmechanicalpropertiesofdrysandunderconfinedcompression[J]. Explosion And Shock Waves, 2011, 31(6): 619-623. doi: 10.11883/1001-1455(2011)06-0619-05
    [11]YE Zhou-yuan, LI Xi-bing, WAN Guo-xiang, ZHOU Zi-long, YIN Tu-bing, HONG Liang. Impact energy-absorption property of rock under tri-axial compression[J]. Explosion And Shock Waves, 2009, 29(4): 419-424. doi: 10.11883/1001-1455(2009)04-0419-06
    [12]WU Xu-tao, HU Shi-sheng, CHEN De-xing, YU Ze-qing. Impact compression experiment of steel fiber reinforced high strength concrete[J]. Explosion And Shock Waves, 2005, 25(2): 125-131. doi: 10.11883/1001-1455(2005)02-0125-07
    [13]CAI Ling-cang, CHEN Qi-feng, GU Yun-jun, ZHOU Xian-ming, JING Fu-qian. Experimental study of light reflectivity of the shocked LY12 aluminum unloading to different gases[J]. Explosion And Shock Waves, 2005, 25(3): 207-221. doi: 10.11883/1001-1455(2005)03-0217-05
  • Cited by

    Periodical cited type(22)

    1. 孔庆亮,夏治园,王刚,钱明渊,刘明锋,杨帆,高朋飞. 高耸钢混结构造粒塔的定向爆破拆除设计及分离式共节点模拟研究. 爆破器材. 2024(01): 57-64 .
    2. 赵盟乔,陈磊,王猛,罗宁,权树恩,刘桐. 复杂环境下爆破拆除130 m多管式套筒烟囱的数值模拟研究. 爆破. 2024(04): 128-135 .
    3. 费鸿禄,张志强,包士杰,张广贝. 框-筒结构楼房折叠爆破拆除数值模拟研究. 爆破. 2023(03): 134-142 .
    4. 高文乐,李元振,赵德龙,张泽华. 多截面承重立柱框架结构爆破拆除数值模拟研究. 爆破. 2021(01): 93-99 .
    5. 高文乐,赵德龙,李元振,张泽华,李坤鹏. 延期时差对多截面承重立柱框架结构拆除爆破效果的影响. 爆破器材. 2021(02): 50-54 .
    6. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥影响的数值模拟研究. 世界桥梁. 2021(03): 97-102 .
    7. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对桩基损伤的临近桥梁受力影响研究. 交通科技. 2021(04): 35-39 .
    8. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥拆除影响的数值模拟分析. 广东公路交通. 2021(04): 134-139 .
    9. 欧阳天云,马建军,池恩安,钟冬望. 剪力墙结构高层住宅楼爆破拆除数值模拟研究. 爆破. 2018(01): 104-108+129 .
    10. 徐长琦. 高层建筑爆破中爆破与塌落振动对比分析. 广东建材. 2018(09): 64-67 .
    11. 何理,钟冬望,涂圣武,陈晨,宋琨. 箍筋对深基坑支撑梁爆破拆除的影响机制. 金属矿山. 2018(08): 45-50 .
    12. 杨小卫,许君风,胡江春. 基于AEM法的爆破拆除倒塌过程的数值模拟. 工程爆破. 2017(02): 11-16 .
    13. 侯舜,刘磊,刘强,王亚,张胜跃. 建(构)筑物拆除爆破塌落触地的试验研究及数值模拟. 世界科技研究与发展. 2016(04): 749-753 .
    14. 李清,杨阳,杨仁树,张迪,王茂源. 内爆法建筑倒塌过程和局部构件破坏数值模拟. 爆破. 2015(01): 32-37 .
    15. 李清,杨阳,杨仁树,张迪,王茂源. 基于MAT96本构模型的钢筋混凝土结构爆破拆除数值模拟. 爆破器材. 2015(01): 41-45 .
    16. 杨阳,杨仁树,李清,张迪,王茂源. 复杂环境下加固型抗震大楼爆破拆除及数值模拟预测. 工程爆破. 2015(04): 24-28+68 .
    17. 冯剑平,黄平明,孙海利,王蒂,朱郑. 钢筋混凝土桥墩爆破拆除数值模拟. 广西大学学报(自然科学版). 2014(01): 214-219 .
    18. 李祥龙,杨阳,栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟. 北京理工大学学报. 2013(12): 1220-1223 .
    19. 言志信,朱辉辉,于换小,刘灿,贺香. 框架结构建筑物爆破拆除数值分析. 爆破. 2013(03): 104-107+155 .
    20. 沈晓松,詹振锵,赵明生,池恩安. 数值模拟在朱旺沱宾馆爆破拆除中的应用. 爆破. 2012(01): 27-30 .
    21. 詹振锵,赵明生,池恩安,王丹丹,和铁柱. 数值模拟在冷却塔爆破拆除中的应用. 爆破. 2012(01): 73-76 .
    22. 佘勇,池恩安,赵明生. 钢筋混凝土双曲拱桥爆破拆除数值模拟. 金属矿山. 2012(07): 50-52+55 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (3357) PDF downloads(498) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return