Volume 35 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Yu Wen-jie, Yu Yong-gang. Numerical simulation of secondary combustion affecting base flow of base bleed equipment[J]. Explosion And Shock Waves, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07
Citation: Yu Wen-jie, Yu Yong-gang. Numerical simulation of secondary combustion affecting base flow of base bleed equipment[J]. Explosion And Shock Waves, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07

Numerical simulation of secondary combustion affecting base flow of base bleed equipment

doi: 10.11883/1001-1455(2015)01-0094-07
  • Received Date: 2013-05-21
  • Rev Recd Date: 2013-10-22
  • Publish Date: 2015-01-25
  • In order to investigate the influence of secondary combustion for base flow field, a mathematical and physical model about base flow with chemical non-equilibrium for base bleed equipment is conducted. H2-CO combustion model which consists 10 components and 25 reactions is used for secondary combustion. Two-dimensional axisymmetric equations are solved using a set of uniform numerical process methods. Simulation results agree with experiment data well. based on this, base flow field and combustion characteristics are numerically predicted. The results show that heat energy released from secondary combustion is far more than heat energy from bleed gases. Secondary combustion has a huge contribution to increase base pressure. It changes the temperature distribution of base region. Bleed gases flow into the shear layer, then combustion occurs. Some mixed gases which flow into the bottom region burn incomplete, because the oxygen is not sufficient near the bottom. Some mixed gases which flow into the downstream and main recirculation zone burn complete, because the oxygen is sufficient. The results can be used as reference for further improvement of the base bleed.
  • loading
  • [1]
    郭锡福.底部排气弹外弹道学[M].北京: 国防工业出版社, 1995.
    [2]
    丁则胜, 邱光纯, 刘亚飞, 等.固体燃料底部排气空气动力研究[J].空气动力学学报, 1991, 9(3): 300-307.

    Ding Ze-sheng, Qiu Guang-chun, Liu Ya-fei, et al. An aerodynamic investigation of base bleed by solid fuel[J]. Acta Aerodynamica Sinica, 1991, 9(3): 300-307.
    [3]
    Bowman J E, Clayden W A. Cylindrical afterbodies at M=2 with hot gas ejection[J]. AIAA Journal, 1968, 6(12): 2429-2431.
    [4]
    Strahle W C, Hubbartt J E, Walterick R. Base burning performance at mach 3[J]. AIAA Journal, 1982, 20(7): 986-991. doi: 10.2514/3.51157
    [5]
    丁则胜, 罗荣, 陈少松, 等.底部燃烧减阻性能的若干参数影响研究[J].弹道学报, 1996, 8(4): 79-83.

    Ding Ze-sheng, Luo Rong, Chen Shao-song, et al. A study of some parameters influence on performance of drag peduction by base burning[J]. Journal of Ballistics, 1996, 8(4): 79-83.
    [6]
    Sahu J, Nietubicz C J, Steger J L. Navier-Stokes computations of projectile base flow with and without base injection[J]. AIAA Journal, 1985, 23(9): 1348-1355. doi: 10.2514/3.9091
    [7]
    Gibeling H J, Buggeln R C. Projectile base bleed technology part 1: Analysis and results[R]. AD-A258 459, 1992.
    [8]
    Choi J Y, Shin E, Kim C K. Numerical study of base-bleed projectile with external combustion[C]//AIAA Joint Propulsion Conference and Exhibit. Tucson, Arizona: AIAA, 2005.
    [9]
    陈新虹, 黄华, 周志超, 等.排气能量对底部排气弹气动特性影响的数值模拟[J].兵工学报, 2010, 31(4): 447-452.

    Chen Xin-hong, Huang Hua, Zhou Zhi-chao, et al. Numerical simulation of base bleed energy affecting aerodynamic performance of base bleed projectiles[J]. Acta Armamentarii, 2010, 31(4): 447-452.
    [10]
    Shin J R, Cho D R, Won S H, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio: AIAA, 2008.
    [11]
    Shin J R, Choi J Y. DES study of base and base-bleed flows with dynamic formulation of DES constant[C]//AIAA Aerospace Sciences Meeting. Orlando, Florida: AIAA, 2011.
    [12]
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
    [13]
    武频, 赵润祥, 郭锡福.弧长网格生成法及其应用[J].南京理工大学学报, 2002, 26(5): 482-485.

    Wu Pin, Zhao Run-xiang, Guo Xi-fu. Arc length method of grid generation and its application[J]. Journal of Nanjing University of Science and Technology, 2002, 26(5): 482-485.
    [14]
    Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA-TP-2791, 1988.
    [15]
    Gardiner W C. Combustion chemistry[M]. New York: Springer-Verlag, 1984.
    [16]
    刘君, 张涵信, 高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5): 19-22.

    Liu Jun, Zhang Han-xin, Gao Shu-chun. A new uncoupled method for numerical simulation of nonequilibrium flow[J]. Journal of National University of Defense Technology, 2000, 22(5): 19-22.
    [17]
    梁德旺, 王可. AUSM+格式的改进[J].空气动力学学报, 2004, 22(4): 404-409.

    Liang De-wang, Wang Ke. Improvement of AUSM+ scheme[J]. Acta Aerodynamica Sinica, 2004, 22(4): 404-409.
    [18]
    Yoon S, Jameson A. Lower-upper symmetric-gauss-seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26: 1025-1026. doi: 10.2514/3.10007
    [19]
    刘晨.复杂燃烧流场数值模拟方法研究[D].南京: 南京航空航天大学, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (3159) PDF downloads(333) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return