Citation: | Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA[J]. Explosion And Shock Waves, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07 |
[1] |
US Nuclear Regulatory Commission. 10 CFR 50.150 Aircraft impact assessment[S]. Washington, DC: US Nuclear Regulatory Commission, 2009.
|
[2] |
US Nuclear Regulatory Commission. RG 1.217 Guidance for the assessment of beyond-design-basis aircraft impacts[S]. Washington, DC: US Nuclear Regulatory Commission, 2011.
|
[3] |
中国国家核安全局. HAD101/04核电厂厂址选择的外部人为事件[S]. 1989.
|
[4] |
中国国家核安全局. HAD101/05与核电厂设计有关的外部人为事件[S]. 1989.
|
[5] |
Quan X, Birnbaum N K, Cowler M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach[C]//5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003.
|
[6] |
Heckötter C, Sievers J, Tarallo F, et al. Comparative analyses of impact tests with reinforced concrete slabs[C]//Towards Convergence of Technical Nuclear Safety Practices in Europe. 2010.
|
[7] |
Abu-Odeh A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA[C]//10th International LS-DYNA Users Conference. 2008.
|
[8] |
Kong S Y, Remennikov A M. Numerical simulation of the response of non-composite steel-concrete-steel sandwich panels to impact loading[J]. Australian Journal of Structural Engineering, 2012, 12(3): 211-223. doi: 10.7158/13287982.2011.11465093
|
[9] |
Morikawa H, Mizuno J, Momma T, et al. Scale model tests of multiple barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
|
[10] |
Mizuno J, Koshika N, Morikawa H, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
|
[11] |
Tsubota H, Koshika N, Mizuno J, et al. Scale model tests of multiple barriers against aircraft impact: Part 1. Experimental program and test results[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
|
[12] |
Mizuno J, Koshika N, Sawamoto Y, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 1: Test program and results[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
|
[13] |
Hallquist J Q. LS-DYNA keyword user's manual, Revision 971[M]. Livermore Software Technology Corporation, 2007.
|
[14] |
Mullapudi T R S, Summers P, Moon H. Impact analysis of steel plated concrete wall[C]//Structures Congress 2012. ASCE, 2012: 1881-1893.
|
[15] |
Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12): 1241-1249. http://www.sciencedirect.com/science/article/pii/S0029549306005875
|
[16] |
朱秀云, 潘蓉, 林皋.基于荷载时程分析法的钢筋混凝土和钢板混凝土墙的冲击响应对比分析[J].振动与冲击, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546
Zhu Xiu-yun, Pan Rong, Lin Gao. Comparative analysis of impact response with reinforced concrete and steel plate concrete walls based on force time-history analysis method[J]. Journal of Vibration and Shock, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546
|
[17] |
NEI07-13 Rev 8P Methodology for performing aircraft impact assessments for new plant designs[S]. 2011.
|
[18] |
Wu You-cai, Crawford J E, Magallanes J M. Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference. 2012.
|
[19] |
Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
|
[1] | MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344 |
[2] | NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434 |
[3] | WANG Mingtao, LU Yubin, CAI Xiongfeng, JIANG Xiquan, CHEN Linbi. A study of impact mechanical properties of the bamboo scrimber along the grain[J]. Explosion And Shock Waves, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260 |
[4] | LIU Sijia, CHEN Li, CAO Mingjin, ZHOU Donglei, FAN Yuan, CHEN Xin. Study on mechanical properties of the kinked rebar under high speed dynamic tension[J]. Explosion And Shock Waves, 2022, 42(5): 053101. doi: 10.11883/bzycj-2021-0328 |
[5] | YUAN Kangbo, YAO Xiaohu, WANG Ruifeng, MO Yonghui. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion And Shock Waves, 2022, 42(9): 091401. doi: 10.11883/bzycj-2021-0416 |
[6] | LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037 |
[7] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[8] | CHEN Song, XI Huifeng, HUANG Shiqing, WANG Bowei, WANG Xiaogang. Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts[J]. Explosion And Shock Waves, 2022, 42(6): 063104. doi: 10.11883/bzycj-2021-0283 |
[9] | GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119 |
[10] | ZHU Yuan, ZHANG Jianxun, QIN Qinghua. Dynamic compressive response of metal orthogonal corrugated sandwich structure[J]. Explosion And Shock Waves, 2020, 40(1): 013101. doi: 10.11883/bzycj-2019-0038 |
[11] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[12] | HU Liangliang, HUANG Ruiyuan, GAO Guangfa, JIANG Dong, LI Yongchi. A novel method for determining strain rate of concrete-like materials in SHPB experiment[J]. Explosion And Shock Waves, 2019, 39(6): 063102. doi: 10.11883/bzycj-2018-0142 |
[13] | WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186 |
[14] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[15] | Wu Jinrong, Ma Qinyong. Influence of polyester fiber on impact compressive characteristics of permeable asphalt concrete[J]. Explosion And Shock Waves, 2016, 36(2): 279-284. doi: 10.11883/1001-1455(2016)02-0279-06 |
[16] | TAO Jun-lin, QIN Li-bo, LI Kui, LIU Dan, JIA Bin, CHEN Xiao-wei, CHEN Gang. Experimentalinvestigationondynamiccompressionmechanical performanceofconcreteathightemperature[J]. Explosion And Shock Waves, 2011, 31(1): 101-106. doi: 10.11883/1001-1455(2011)01-0101-06 |
[17] | YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05 |
[18] | SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05 |
[19] | DOU Jin-long, WANG Xu-guang, LIU Yun-chuan. Dynamic mechanical behaviors of poplar wood[J]. Explosion And Shock Waves, 2008, 28(4): 367-371. doi: 10.11883/1001-1455(2008)04-0367-05 |
[20] | MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, JI Guang-fu, ZHU Wei, XIAO He-ming. Simulation study on structure and property of HMX-based multi-components PBX[J]. Explosion And Shock Waves, 2007, 27(2): 109-115. doi: 10.11883/1001-1455(2007)02-0109-07 |