Citation: | Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA[J]. Explosion And Shock Waves, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07 |
[1] |
US Nuclear Regulatory Commission. 10 CFR 50.150 Aircraft impact assessment[S]. Washington, DC: US Nuclear Regulatory Commission, 2009.
|
[2] |
US Nuclear Regulatory Commission. RG 1.217 Guidance for the assessment of beyond-design-basis aircraft impacts[S]. Washington, DC: US Nuclear Regulatory Commission, 2011.
|
[3] |
中国国家核安全局. HAD101/04核电厂厂址选择的外部人为事件[S]. 1989.
|
[4] |
中国国家核安全局. HAD101/05与核电厂设计有关的外部人为事件[S]. 1989.
|
[5] |
Quan X, Birnbaum N K, Cowler M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach[C]//5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003.
|
[6] |
Heckötter C, Sievers J, Tarallo F, et al. Comparative analyses of impact tests with reinforced concrete slabs[C]//Towards Convergence of Technical Nuclear Safety Practices in Europe. 2010.
|
[7] |
Abu-Odeh A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA[C]//10th International LS-DYNA Users Conference. 2008.
|
[8] |
Kong S Y, Remennikov A M. Numerical simulation of the response of non-composite steel-concrete-steel sandwich panels to impact loading[J]. Australian Journal of Structural Engineering, 2012, 12(3): 211-223. doi: 10.7158/13287982.2011.11465093
|
[9] |
Morikawa H, Mizuno J, Momma T, et al. Scale model tests of multiple barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
|
[10] |
Mizuno J, Koshika N, Morikawa H, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 2. Simulation analyses of scale model impact tests[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
|
[11] |
Tsubota H, Koshika N, Mizuno J, et al. Scale model tests of multiple barriers against aircraft impact: Part 1. Experimental program and test results[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology. Seoul, Korea, 1999.
|
[12] |
Mizuno J, Koshika N, Sawamoto Y, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 1: Test program and results[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology. 2005.
|
[13] |
Hallquist J Q. LS-DYNA keyword user's manual, Revision 971[M]. Livermore Software Technology Corporation, 2007.
|
[14] |
Mullapudi T R S, Summers P, Moon H. Impact analysis of steel plated concrete wall[C]//Structures Congress 2012. ASCE, 2012: 1881-1893.
|
[15] |
Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12): 1241-1249. http://www.sciencedirect.com/science/article/pii/S0029549306005875
|
[16] |
朱秀云, 潘蓉, 林皋.基于荷载时程分析法的钢筋混凝土和钢板混凝土墙的冲击响应对比分析[J].振动与冲击, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546
Zhu Xiu-yun, Pan Rong, Lin Gao. Comparative analysis of impact response with reinforced concrete and steel plate concrete walls based on force time-history analysis method[J]. Journal of Vibration and Shock, 2014, 33(22): 172-177. http://qikan.cqvip.com/Qikan/Article/Detail?id=663071546
|
[17] |
NEI07-13 Rev 8P Methodology for performing aircraft impact assessments for new plant designs[S]. 2011.
|
[18] |
Wu You-cai, Crawford J E, Magallanes J M. Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference. 2012.
|
[19] |
Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
|
[1] | WANG Fei, HAN Jin, CHEN Jinshe, CHEN Haiyan, ZHANG Yansong, YANG Yang, ZHANG Yang, ZHU Yuzhen. Preparation of NiP@Fe-SBA-15 suppressant and its inhibition mechanism on PP dust deflagration flames[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0434 |
[2] | CAI Chongchong, SU Yang, WANG Yan. Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane[J]. Explosion And Shock Waves, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330 |
[3] | JI Wentao, GUO Xiaoxiao, CHEN Zhitao, CAI Chongchong, WANG Yan. Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite[J]. Explosion And Shock Waves, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263 |
[4] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[5] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[6] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[7] | WU Linyuan, YU Lifu, WANG Tianshu, SUN Wei, XU Jianhang, LI Hang. Explosion characteristics of oil shale dust in a confined space[J]. Explosion And Shock Waves, 2022, 42(1): 015401. doi: 10.11883/bzycj-2021-0139 |
[8] | XIE Jibiao, ZHANG Jiaqi, DING Ce, WANG Xiaoli. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2[J]. Explosion And Shock Waves, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016 |
[9] | KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193 |
[10] | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[11] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[12] | ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228 |
[13] | ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276 |
[14] | HUANG Chuyuan, CHEN Xianfeng, ZHANG Hongming, TANG Wenwen, CHEN Xi, ZHANG Wenbo, LIU Xuanya. Experimental investigation on suppression of starch flame by ultrafine silicon dioxide powders[J]. Explosion And Shock Waves, 2018, 38(2): 324-330. doi: 10.11883/bzycj-2016-0235 |
[15] | Zhang Yingxin, Wu Qiang, Liu Chuanhai, Jiang Bingyou, Zhang Baoyong. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2[J]. Explosion And Shock Waves, 2017, 37(5): 906-912. doi: 10.11883/1001-1455(2017)05-0906-07 |
[16] | Yu Minggao, Yang Yong, Pei Bei, Niu Pan, Zhu Xinna. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion And Shock Waves, 2017, 37(2): 194-200. doi: 10.11883/1001-1455(2017)02-0194-07 |
[17] | Li Ying, Ren Guangwei, Zhang Wei, Zhao Pengduo, Zhang Lei, Du Zhipeng. Water mitigation effect under internal blast[J]. Explosion And Shock Waves, 2017, 37(6): 1080-1086. doi: 10.11883/1001-1455(2017)06-1080-07 |
[18] | Zhang Peili, Du Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion And Shock Waves, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06 |
[19] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[20] | XIE Li-feng, LI Bin, SHEN Zheng-xiang, LONG Yin. Experiment on combustion and detonation characteristics and its suppression for liquid vapor[J]. Explosion And Shock Waves, 2009, 29(6): 659-664. doi: 10.11883/1001-1455(2009)06-0659-06 |
1. | 李珩,马国锐,刘宇迪,张海明. 基于遥感影像的大当量爆炸建筑物毁伤评估模型. 爆炸与冲击. 2024(03): 80-89 . ![]() | |
2. | 秦帅,刘浩,陈力,张磊. 融合先验知识的混凝土侵彻深度试验数据异常点检测算法. 爆炸与冲击. 2024(03): 70-79 . ![]() | |
3. | 马天宝,龙俊文,刘玥. 基于BP神经网络的水中双爆源爆炸冲击波峰值压力预测模型研究. 北京理工大学学报. 2024(03): 260-269 . ![]() | |
4. | 韩小祥,李君,张欣,原林,刘洋,王博宇. 核爆炸光辐射能量分布的模拟仿真研究. 强激光与粒子束. 2024(07): 119-130 . ![]() |