Zhou Zheng-qing, Nie Jian-xin, Qin Jian-feng, Pei Hong-bo, Guo Xue-yong. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion And Shock Waves, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
Citation: Liu Xiao-jun, Fu De-bin, Niu Qing-lin, Li Xia. Numerical simulation of heat transfer for exhausted gases jet impinging[J]. Explosion And Shock Waves, 2015, 35(2): 229-235. doi: 10.11883/1001-1455(2015)02-0229-07

Numerical simulation of heat transfer for exhausted gases jet impinging

doi: 10.11883/1001-1455(2015)02-0229-07
  • Received Date: 2013-08-29
  • Rev Recd Date: 2013-12-13
  • Publish Date: 2015-03-25
  • To the case of heat transfer, the flowing process of jet flow impacting on a plate vertically is simulated by employing RNGk-ε turbulence model, which is compared with the experimental data, to verify the feasibility of the model. Based on the simulating results, the models of the impact of supersonic jet flow on plate vertically and on submerged plate are built respectively by considering the parameters of rocket nozzle entrance as the inlet conditions. In addition, the distributions of the Nusselt number and temperature are calculated under different impacting conditions. Moreover the characteristics and factors of supersonic jet flow heat transfer are analyzed. The results show the range of Nusselt number under different impacting distances are between 14D and 18D, and reflect that the impacting distance and jet flow temperature are the key factors which influence the heat transfer rate. Furthermore, when the impacting distance increases, the heat transfer rate decreases. In contrast, the higher the temperature of jet flow on the plate is, the greater the efficiency of heat transfer is.
  • [1]
    Baydar E, Ozmen Y. An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers[J]. Applied Thermal Engineering, 2005, 25(2): 409-421. https://www.sciencedirect.com/science/article/pii/S1359431104001474
    [2]
    Chen Y C, Ma C F, Qin M, et al. Forced convective heat transfer with impinging slot jets of mesoscale[J]. International Journal of Heat and Mass Transfer, 2006, 49(1): 406-410. https://www.sciencedirect.com/science/article/pii/S0017931005004874
    [3]
    Liu Q, Sleiti A K, Kapat J S. Application of pressure and temperature sensitive paints for study of heat transfer to a circular impinging air jet[J]. International Journal of Thermal Sciences, 2008, 47(6): 749-757. https://www.researchgate.net/publication/222924201_Application_of_Pressure_and_Temperature_Sensitive_Paints_for_Study_of_Heat_Transfer_to_a_Circular_Impinging_Air_Jet
    [4]
    Ramanujachari V, Vijaykant S, Roy R D, et al. Heat transfer due to supersonic flow impingement on a vertical plate[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3707-3712. https://www.researchgate.net/publication/245094227_Heat_transfer_due_to_supersonic_flow_impingement_on_a_vertical_plate
    [5]
    Behniat M, Parneix S. Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate[J]. International Journal of Heat Mass Transfer, 1998, 41(12): 1845-1855. https://www.sciencedirect.com/science/article/pii/S0017931097002548
    [6]
    陈庆光, 徐忠, 张永建.半封闭圆管湍流射流冲击平板的数值研究[J].西安交通大学学报, 2001, 35(11): 1206-1208. http://d.wanfangdata.com.cn/Periodical/xajtdxxb200111026

    Chen Qing-guang, Xu Zhong, Zhang Yong-jian. Numerical investigation of semi-confined round turbulent jet impinging on a flat plate[J]. Journal of Xi'an Jiaotong University, 2001, 35(11): 1206-1208. http://d.wanfangdata.com.cn/Periodical/xajtdxxb200111026
    [7]
    陈庆光, 徐忠, 张永建.用改进的RNG模式数值模拟湍流冲击射流流动[J].西安交通大学学报, 2002, 36(9): 916-920. http://www.cqvip.com/qk/90854x/200209/6891964.html

    Chen Qing-guang, Xu Zhong, Zhang Yong-jian. Numerical investigation of semi-confined round turbulent jet impinging on a flat plate[J]. Journal of Xi'an Jiaotong University, 2002, 36(9): 916-920. http://www.cqvip.com/qk/90854x/200209/6891964.html
    [8]
    Merci B, Dick E. Heat transfer predictions with a cubic k-ε model for axisymmetric turbulent jets impinging onto a flat plate[J]. International Journal of Heat and Mass Transfer, 2003, 46(3): 469-480.
    [9]
    许坤梅, 张平.半封闭圆管冲击射流湍流换热数值模拟[J].北京理工大学学报, 2003, 23(5): 540-544. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb200305003

    Xu Kun-mei, Zhang Ping. Numerical prediction of turbulent heat transfer in a semi-confined impinging jet[J]. Transactions of Beijing Institute of Technology, 2003, 23(5): 540-544. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb200305003
    [10]
    傅德彬.数值仿真及其在航天发射技术中的应用[M].北京: 国防工业出版社, 2011: 28-34.
    [11]
    李鹏飞, 徐敏义, 王飞飞.精通CFD工程仿真与案例实战[M].北京: 人民邮电出版社, 2011: 329-338.
    [12]
    赵承庆.气体射流动力学[M].北京: 北京理工大学出版社, 1998: 103-106.
    [13]
    Heck U, Fritsching K, Bauckhage K. Fluid flow and heat transfer in gas jet quenching of a cylinder[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(1): 36-49.
    [14]
    Wilcox D C. Turbulence modeling for CFD[M]. La Canada, California: DCW Industries, 2002.
    [15]
    赵镇南.传热学[M].北京: 高等教育出版社, 2008: 173-192.
  • Cited by

    Periodical cited type(13)

    1. 吕晋贤,吴昊,卢永刚,陈德. 爆炸作用下建筑结构高效毁伤评估方法. 爆炸与冲击. 2025(01): 135-152 . 本站查看
    2. 陈公轻,吴昊,欧渊,王帆,吕晋贤. 内爆炸作用下含填充墙RC框架结构破坏分析. 振动与冲击. 2025(05): 289-301 .
    3. 刘举,张国凯,王振,姚箭,李杰,于思远,纪玉国. 温压炸药近爆作用下RC梁破坏特征和毁伤规律试验研究. 兵工学报. 2024(03): 864-874 .
    4. 院素静,宗周红,林津,潘亚豪. 接触爆炸下混凝土连续梁桥倒塌破坏试验. 中国公路学报. 2024(11): 139-151 .
    5. 张亚洲,石广豪,贾鑫,黄正祥. 接触爆炸下全尺寸钢筋混凝土墙的毁伤特性研究. 兵工自动化. 2024(12): 55-61+79 .
    6. 院素静,杨凯,刘泽瑞,宗周红. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟. 东南大学学报(自然科学版). 2023(01): 76-85 .
    7. Sujing Yuan,Yazhu Li,Zhouhong Zong,Minghong Li,Yajun Xia. A review on close-in blast performance of RC bridge columns. Journal of Traffic and Transportation Engineering(English Edition). 2023(04): 675-696 .
    8. 陈昊,卢浩,孙善政,熊自明,岳松林,王德荣. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律. 爆炸与冲击. 2023(08): 155-167 . 本站查看
    9. 许迎亮,刘彦,闫俊伯,白帆,于浩,李旭,王虹富. 双装药同步爆炸钢筋混凝土梁毁伤效应. 兵工学报. 2023(12): 3719-3732 .
    10. 唐泓,苏健军,翟红波,魏巍. 近场爆炸作用下简支钢筋混凝土梁冲剪破坏的预测方法. 兵器装备工程学报. 2022(02): 117-123 .
    11. 唐泓,翟红波,苏健军,付腾. 近场爆炸下钢筋混凝土梁毁伤效应研究. 兵器装备工程学报. 2022(03): 196-201 .
    12. 郝礼楷,顾文彬,邹绍昕,陈姮,刘森琪,阳恒. 空气中集团装药对混凝土墩接触爆炸毁伤研究. 兵器装备工程学报. 2022(05): 97-102 .
    13. 赵卫坤,沈峰,夏益兵. 爆炸荷载下装配式钢筋混凝土梁动力响应及抗爆性能研究. 河北工程大学学报(自然科学版). 2022(04): 18-25 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (3067) PDF downloads(627) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return