Citation: | Wu Song-lin, Du Yang, Li Guo-qing, Zhang Pei-li. Reduced mechanism and analysis for thermal deflagration of C1-C4 alkane mixture[J]. Explosion And Shock Waves, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10 |
[1] |
Battin-Leclerc F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in Energy and Combustion Science, 2008, 34: 440-498. doi: 10.1016/j.pecs.2007.10.002
|
[2] |
Wang Yi-feng, Yao Ming-fa, Zheng Zun-qing. A semi-detailed chemical kinetic model of a gasoline surrogate fuel for internal combustion engine applications[J]. Fuel, 2013, 113(2): 347-356. http://www.sciencedirect.com/science/article/pii/S0016236113004882
|
[3] |
刘合, 陈方, 刘洪, 等.甲烷/空气预混超声速燃烧的18步简化机理[J].燃烧科学与技术, 2012, 18(5): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201205015.htm
Liu He, Chen Fang, Liu Hong, et al. 18-step reduced mechanism for methane/air premixed supersonic combustion[J]. Journal of Combustion Science and Technology, 2012, 18(5): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201205015.htm
|
[4] |
梁运涛.封闭空间瓦斯爆炸过程的反应动力学分析[J].中国矿业大学学报, 2010, 39(2): 196-200. http://d.wanfangdata.com.cn/Periodical/zgkydxxb201002009
Liang Yun-tao. Analysis of reaction kinetic for gas explosion in enclosed space[J]. Journal of China University of Mining and Technology, 2010, 39(2): 196-200. http://d.wanfangdata.com.cn/Periodical/zgkydxxb201002009
|
[5] |
刘耀东, 解茂昭, 贾明, 等.一个改进的异辛烷氧化化学动力学骨架模型[J].工程热物理学报, 2013, 34(4): 791-795. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201304049.htm
Liu Yao-dong, Xie Mao-zhao, Jia Ming, et al. An improved skeletal chemical kinetic model for iso-octane oxidation[J]. Journal of Engineering Thermophysics, 2013, 34(4): 791-795. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201304049.htm
|
[6] |
方亚梅, 王全德, 王繁, 等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报, 2012, 28(11): 2536-2542. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201211006.htm
Fang Ya-mei, Wang Quan-de, Wang Fan, et al. Reduction of the detailed kinetic mechanism for high-temperature combustion of n-dodecane[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2536-2542. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201211006.htm
|
[7] |
姚通, 钟北京.正癸烷着火及燃烧的化学动力学模型[J], 物理化学学报, 2013, 29(2): 237-244.
Yao Tong, Zhong Bei-jing. Chemical kinetic model for auto-ignition and combustion of n-decane[J]. Acta Physico-Chimica Sinica, 2013, 29(2): 237-244.
|
[8] |
雒婧, 尧命发.正庚烷甲苯混合物燃烧简化机理分析[J].燃烧科学与技术, 2012, 18(4): 367-374. http://d.wanfangdata.com.cn/Periodical/rskxyjs201204013
Luo Jing, Yao Ming-fa. Reduced combustion mechanism of n-heptane/toluene mixtures[J]. Journal of Combustion Science and Technology, 2012, 18(4): 367-374. http://d.wanfangdata.com.cn/Periodical/rskxyjs201204013
|
[9] |
郑东, 钟北京.异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型[J].物理化学学报, 2012, 28(9): 2029-2036. http://d.wanfangdata.com.cn/Periodical/wlhxxb201209003
Zheng Dong, Zhong Bei-jing. Chemical kinetic model for ignition of three-component fuel comprising iso-octane/n-heptane/ethanol[J]. Acta Physico-Chimica Sinica, 2012, 28(9): 2029-2036. http://d.wanfangdata.com.cn/Periodical/wlhxxb201209003
|
[10] |
Mehl M, Pitz W J, Westbrook C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193-200. http://www.sciencedirect.com/science/article/pii/S1540748910000787
|
[11] |
曾文, 解茂昭.正庚烷HCCI燃烧下多环芳烃生成机理与影响因素分析[J].大连理工大学学报, 2012, 52(2): 183-190. http://www.cqvip.com/QK/90724X/20122/41248426.html
Zeng Wen, Xie Mao-zhao. Analyses of influencing factors and formation mechanism of polycyclic aromatic hydrocarbons in n-heptane HCCI combustion[J]. Journal of Dalian University of Technology, 2012, 52(2): 183-190. http://www.cqvip.com/QK/90724X/20122/41248426.html
|
[12] |
张庆峰, 郑朝蕾, 何祖威, 等.适用于HCCI发动机的基础燃料化学动力学模型: Ⅱ:构造骨架机理[J].内燃机学报, 2011, 29(2): 133-138. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201102007.htm
Zhang Qing-feng, Zheng Zhao-lei, He Zu-wei, et al. A chemical kinetic model of PRF oxidation for HCCI engine: Ⅱ: Structure of a skeletal model[J]. Transactions of CSICE, 2011, 29(2): 133-138. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201102007.htm
|
[13] |
Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and Flame, 2008, 155(4): 713-738. doi: 10.1016/j.combustflame.2008.05.002
|
[14] |
Narayanaswamy K, Blanquart G, Pitsch H. A consistent chemical mechanism for oxidation of substituted aromatic species[J]. Combustion and Flame, 2010, 157(10): 1879-1898. doi: 10.1016/j.combustflame.2010.07.009
|
[15] |
贾宝山, 李艳红, 曾文, 等.受限空间瓦斯爆炸链式反应机理的敏感性分析[J].环境工程, 2011, 29(增刊): 318-323. http://www.cqvip.com/QK/93897X/2011S1/1003576782.html
Jia Bao-shan, Li Yan-hong, Zeng Wen, et al. Sensitive analysis of chain reaction mechanism of gas explosion[J]. Environmental Engineering, 2011, 29(Suppl): 318-323. http://www.cqvip.com/QK/93897X/2011S1/1003576782.html
|
[16] |
Li Shan-ling, Jiang Yong, Qiu Rong. Detailed mechanism reduction for C3H8/DMMP/air flame based on path flux analysis-sensitivity analysis method[J]. Journal of Combustion Science and Technology, 2012, 18(5): 473-478. http://d.wanfangdata.com.cn/Periodical_rskxyjs201205017.aspx
|
[17] |
Lawrence Livermore National Laboratory. C1-C4 mechanism with PAH formation[EB/OL]. [2014-2-10].https://combustion.llnl.gov/mechanisms/aromatic-and-pah-formation/c1c4-mechanism-with-pah-formation.
|