Zhou Pei-jie, Wang Jian, Tao Gang, Zhou Jie. Attenuation characteristics of shock waves interacting with open and closed foams[J]. Explosion And Shock Waves, 2015, 35(5): 675-681. doi: 10.11883/1001-1455(2015)05-0675-07
Citation: Zhou Pei-jie, Wang Jian, Tao Gang, Zhou Jie. Attenuation characteristics of shock waves interacting with open and closed foams[J]. Explosion And Shock Waves, 2015, 35(5): 675-681. doi: 10.11883/1001-1455(2015)05-0675-07

Attenuation characteristics of shock waves interacting with open and closed foams

doi: 10.11883/1001-1455(2015)05-0675-07
  • Received Date: 2014-03-19
  • Rev Recd Date: 2014-06-18
  • Publish Date: 2015-10-10
  • Experiments were carried out to explore the mechanical properties of the attenuation of shock waves respectively interacted with wooded plates, open and closed cellular foams. Based on the experimental data, the peak overpressure and positive impulse loss of shock waves were quantitatively analyzed as well as the positive impulses of the incidence, reflection and transmission shock waves. The experimental results show that the attenuation capacity of foams to shock waves is mainly due to the shock wave reflection and energy dissipation inside the foam microstructure. And the mechanical phenomena of open foam to shock wave are not fully consistent with those of closed foam, while the attenuation capacity of open foam to shock wave is more effective than that of closed foam.
  • [1]
    Lu Guo-xing, Yu Tong-xi. Energy absorption of structures and materials[M]//Woodhead Publishing Series in Metals and Surface Engineering. US: Woodhead Publishing Limited, 2003: 385-400.
    [2]
    Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Cambridge, New York: Cambridge University Press, 1997.
    [3]
    Gibson L J, Ashby M F, Zhang J, et al. Failure surfaces for cellular materials under multiaxial loads modeling[J]. International Journal of Mechanical Sciences, 1989, 31(9): 635-663. doi: 10.1016/S0020-7403(89)80001-3
    [4]
    Gibson L J, Ashby M F. The mechanics of three-dimensional cellular materials[J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1982, 382(1782): 43-59. doi: 10.1098/rspa.1982.0088
    [5]
    Lee J J, Frost D L, Lee J H S. Transmission of a blast wave through a deformable layer[M]//Shock Waves @ Marseille Ⅲ. Springer Berlin Heidelberg, 1995: 181-186.
    [6]
    Kleine H, Diaconescu G, Lee J H S. Blast wave propagation in foam[M]//Shock Waves@ Pasadena Ⅲ. World Scientific, 1996: 1351-1356.
  • Cited by

    Periodical cited type(13)

    1. 李晋,李剑,孔庆珊,裴志鹏,张恒冉,赵舒雅. 基于组稀疏的桥梁混凝土波速反演重建方法. 计算机测量与控制. 2025(01): 261-268 .
    2. 孙传猛,陈嘉欣,原玥,裴东兴,马铁华. 基于串并行双分支网络的冲击波信号重构方法. 振动与冲击. 2024(06): 38-49 .
    3. 魏晓曼,李剑,刘晓佳,郭陈莉,展勇忠,刘代劲. 基于空间约束联合字典学习的三维冲击波超压场重建. 探测与控制学报. 2024(02): 108-114 .
    4. 宋一娇,孔慧华,李剑,齐子文,张然. 基于超拉普拉斯正则化的冲击波超压层析重建. 电子测量技术. 2024(10): 160-167 .
    5. 杨洋,杜红棉,郭晋杰,王孺豪. 基于深度学习的残缺冲击波信号构建方法. 中北大学学报(自然科学版). 2024(05): 687-694 .
    6. 刘晓佳,李剑,孙泽鹏,马明星,魏晓曼. 基于三维走时的冲击波超压场重建方法. 舰船电子工程. 2023(01): 76-81 .
    7. 闫昕蕾,李剑,孔慧华,王黎明,郭亚丽. 基于压缩感知的冲击波超压场重建方法. 电子测量技术. 2022(02): 84-90 .
    8. 孙传猛,裴东兴,陈嘉欣,许瑞嘉,崔春生,高群昌. 基于深度学习的爆炸冲击波信号重构模型. 计测技术. 2022(02): 57-67 .
    9. 吕中杰,李浩阳,高晨宇,朱学亮,黄风雷. 基于地面反射冲击波与遗传算法的动爆超压场重建方法. 安全与环境学报. 2022(04): 1872-1878 .
    10. 钞红晓,胡浩,雷强,高瑞,姚国庆. 基于地震波触发的战斗部动爆冲击波试验研究. 爆炸与冲击. 2021(08): 105-113 . 本站查看
    11. 姚悦,丁永红,裴东兴,张晓光. 空气中爆炸冲击波曲线重建方法. 计量学报. 2019(04): 636-641 .
    12. 赵化彬,张志杰. 基于非均匀有理B样条“蛛网”插值的冲击波压力场重建方法. 科学技术与工程. 2017(18): 258-264 .
    13. 杨志,张志杰,夏永乐. 基于B样条插值拟合的冲击波超压场重建. 科学技术与工程. 2016(07): 236-240 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (2926) PDF downloads(387) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return